POLYNOMIAL SPLITTING MEASURES AND COHOMOLOGY OF THE PURE BRAID GROUP

TREVOR HYDE AND JEFFREY C. LAGARIAS

Abstract

We study for each n a one-parameter family of complex-valued measures on the symmetric group S_{n}, which interpolate the probability of a monic, degree n, square-free polynomial in $\mathbb{F}_{q}[x]$ having a given factorization type. For a fixed factorization type, indexed by a partition λ of n, the measure is known to be a Laurent polynomial. We express the coefficients of this polynomial in terms of characters associated to S_{n}-subrepresentations of the cohomology of the pure braid group $H^{\bullet}\left(P_{n}, \mathbb{Q}\right)$. We deduce that the splitting measures for all parameter values $z=-\frac{1}{m}$ (resp. $z=\frac{1}{m}$), after rescaling, are characters of S_{n}-representations (resp. virtual S_{n}-representations.)

1. Introduction

The purpose of this paper is to study for each $n \geq 1$ a one-parameter family of complex-valued measures on the symmetric group S_{n} arising from a problem in number theory, and to exhibit an explicit representation-theoretic connection between these measures and the characters of the natural S_{n}-action on the rational cohomology of the pure braid group P_{n}.

This family of measures, denoted $\nu_{n, z}^{*}$, was introduced by the second author and B. Weiss in [13], where they were called z-splitting measures, with parameter $z \in \mathbb{C}$. The measures interpolate from prime power values $z=q$ the probability of a monic, degree n, square-free polynomial in $\mathbb{F}_{q}[x]$ having a given factorization type. Square-free factorization types are indexed by partitions λ of n specifying the degrees of the irreducible factors. Each partition λ of n corresponds to a conjugacy class C_{λ} of the symmetric group S_{n}; distributing the probability of a factorization of type λ equally across the elements of C_{λ} defines a probability measure on S_{n}. A key property of the resulting probabilities is that for a fixed partition λ, their values are described by a rational function in the size of the field \mathbb{F}_{q} as q varies. This permits interpolation from q to a parameter $z \in \mathbb{P}^{1}(\mathbb{C})$, from which one obtains the family of complex-valued measures $\nu_{n, z}^{*}$ on S_{n} given in Definition 2.3 below.

On the number theory side, these measures connect with problems on the splitting of ideals in S_{n}-number fields, which are degree n number fields formed by adjoining a root of a degree n polynomial over $\mathbb{Z}[x]$ whose splitting splitting field has Galois group S_{n}. The paper [13, Theorem 2.6] observed that for primes $p<n$

[^0]these measures vanish on certain conjugacy classes, corrensponding to the phenomenon of essential discriminant divisors of polynomials having Galois group S_{n}, first noted by Dedekind [7] in 1878. These measures converge to the uniform measure on the symmetric group as $z=p \rightarrow \infty$, and in this limit agree with a conjecture of Bhargava [2, Conjecture 1.3] on the distribution of splitting types of the prime p in S_{n}-extensions of discriminant $|D| \leq B$ as the bound $B \rightarrow \infty$, conditioned on $(D, p)=1$.

The second author [12] subsequently studied these measures at the special value $z=1$ as representing splitting probabilities for polynomials over the (hypothetical) "field with one element \mathbb{F}_{1}." The splitting measures at $z=1$ are signed measures for $n \geq 3$, unlike all other nonzero integral values of z. The 1 -splitting measures are supported on a small set of conjugacy classes, the Springer regular elements of S_{n} (those conjugacy classes C_{λ} for which λ has a rectangular Young diagram or a rectangle plus a single box.) Viewed as class functions on S_{n}, rather than as measures, they were found to have a representation-theoretic interpretation: after rescaling by $n!$, they are virtual characters of S_{n} corresponding to explicitly determined representations. As n varies, their values on conjugacy classes were observed to have arithmetic properties compatible with the multiplicative structure of n; letting $n=\prod_{p} p^{e_{p}}$ be the canonical prime factorization of n, the measure's value on each conjugacy class factors corresponding to values on certain conjugacy classes of the smaller symmetric groups $S_{p^{e} p}$. That paper also showed the rescaled z-splitting measures at $z=-1$ have a representation-theoretic interpretation.

These observations motivate further investigation of these measures, to locate a source for the connection with the representation theory of S_{n}. In this paper we find a representation-theoretic structure that extends to the entire family of z splitting measures. Our starting point is the observation ${ }^{1}$ that for a fixed conjugacy class the z-splitting measures are Laurent polynomials in z, cf. They have degree at most $n-1$, so may be written

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\sum_{k=0}^{n-1} \alpha_{n}^{k}\left(C_{\lambda}\right)\left(\frac{1}{z}\right)^{k},
$$

with coefficients $\alpha_{n}^{k}\left(C_{\lambda}\right)$, where λ is a partition of n and each $\alpha_{n}^{k}\left(C_{\lambda}\right)$ is a rational number. We call the $\alpha_{n}^{k}\left(C_{\lambda}\right)$ splitting measure coefficients. The novel observation of this paper is that each separate splitting measure coefficient $\alpha_{n}^{k}\left(C_{\lambda}\right)$, viewed as a function of λ, is a rescaled version of the character χ_{n}^{k} of a certain S_{n}-subrepresentation A_{n}^{k} of the cohomology of the pure braid group $H^{k}\left(P_{n}, \mathbb{Q}\right)$. The pure braid groups P_{n} and their cohomology are discussed in Section 4, and the subrepresentations A_{n}^{k} described. We deduce as a consequence that the rescaled z splitting measure is a character of S_{n} at $z=-\frac{1}{m}$ and is a virtual character of S_{n} at $z=\frac{1}{m}$, for all integers $m \geq 1$ (Theorem 5.2). This extends the representationtheoretic connection of [12] for $z= \pm 1$ to the parameter values $z= \pm \frac{1}{m}$ for all $m \geq 1$.

[^1]1.1. Results. The z-splitting measure on a conjugacy class C_{λ} of S_{n} is the rational function of z
$$
\nu_{n, z}^{*}\left(C_{\lambda}\right):=\frac{N_{\lambda}(z)}{z^{n}-z^{n-1}},
$$
where $N_{\lambda}(z) \in \mathbb{Q}[z]$ denotes the cycle polynomial associated to a partition λ describing the cycle lengths of C_{λ}. Given $\lambda=\left(1^{m_{1}(\lambda)} 2^{m_{2}(\lambda)} \cdots n^{m_{n}(\lambda)}\right)$, the associated cycle polynomial is
\[

$$
\begin{equation*}
N_{\lambda}(z):=\prod_{j \geq 1}\binom{M_{j}(z)}{m_{j}(\lambda)}, \tag{1.1}
\end{equation*}
$$

\]

where $M_{j}(z)$ denotes the j th necklace polynomial. The necklace polynomial $M_{j}(z)$ of order j is given by

$$
M_{j}(z):=\frac{1}{j} \sum_{d \mid j} \mu(d) z^{j / d} .
$$

where $\mu(d)$ is the Möbius function.
To avoid confusion we make a remark on normalizations. Given a class function f on S_{n} we write $f\left(C_{\lambda}\right)$ for the sum of the values of f on C_{λ} and $f(\lambda)$ for the value $f(g)$ taken at one element $g \in C_{\lambda}$; the latter notation is standard for characters. Thus $\nu_{n, z}^{*}\left(C_{\lambda}\right)=\left|C_{\lambda}\right| \nu_{n, z}^{*}(\lambda)$. With this in mind, in Section 7.1 we introduce the normalized splitting measure ν_{w}, defined uniformly on partitions of any size, by

$$
\nu_{w}(\lambda):=\frac{n!}{\left|C_{\lambda}\right|} \frac{w^{n} N_{\lambda}\left(w^{-1}\right)}{1-w} .
$$

Each $\nu_{w}(\lambda)$ is a polynomial in w with integer coefficients and constant term 1.
In Section 3 we express the family of cycle polynomials $N_{\lambda}(z)$ in terms of characters of the cohomology of the pure braid group P_{n} viewed as an S_{n}-representation.

Theorem 1.1 (Character interpretation of cycle polynomial coefficients). Let λ be a partition of n and $N_{\lambda}(z)$ be a cycle polynomial. Then

$$
N_{\lambda}(z)=\frac{\left|C_{\lambda}\right|}{n!} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}(\lambda) z^{n-k} .
$$

where h_{n}^{k} is the character of the k th cohomology of the pure braid group $H^{k}\left(P_{n}, \mathbb{Q}\right)$, viewed as an S_{n}-representation.

Theorem 1.1 is proven in Section 3 (as Theorem 3.2) using the twisted GrothendieckLefschetz formula of Church, Ellenberg, and Farb [4, Prop. 4.1]. Comparing this formula for $N_{\lambda}(z)$ with (1.1), we deduce many properties of the characters h_{n}^{k} in an elementary fashion.

In Section 4 we review the pure braid group and its cohomology, and derive an exact sequence producing S_{n}-subrepresentations A_{n}^{k} of $H^{k}\left(P_{n}, \mathbb{Q}\right)$. The main result of this paper, given in the Section 5 , is an expression of the z-splitting measures $\nu_{n, z}^{*}$ in terms of the characters χ_{n}^{k} of A_{n}^{k}.

Theorem 1.2 (Character interpretation of splitting measure coefficients). For each $n \geq 1$ and $0 \leq k \leq n-1$ there is an S_{n}-subrepresentation A_{n}^{k} of $H^{k}\left(P_{n}, \mathbb{Q}\right)$ (constructed explicitly in Proposition 4.2) with character χ_{n}^{k} such that for each partition λ of n,

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\frac{\left|C_{\lambda}\right|}{n!} \sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda)\left(\frac{1}{z}\right)^{k}
$$

Thus the splitting measure coefficient $\alpha_{n}^{k}\left(C_{\lambda}\right)$ is

$$
\alpha_{n}^{k}\left(C_{\lambda}\right)=\left|C_{\lambda}\right| \alpha_{n}^{k}(\lambda)=(-1)^{k} \frac{\left|C_{\lambda}\right|}{n!} \chi_{n}^{k}(\lambda)
$$

We obtain in Section 5.2 a corollary of this result: For $z=-\frac{1}{m}$ with $m \geq$ 1 , the rescaled splitting measure itself $\frac{n!}{\left|C_{\lambda}\right|} \nu_{n, z}^{k}\left(C_{\lambda}\right)$ is the character of an $S_{n^{-}}$ representation, and when $z=\frac{1}{m}$ it is the character of a virtual S_{n}-representation.

In Section 5.3 we use Theorem 1.2 and values of the (-1)-splitting measure computed in [12] to prove the following relation between the S_{n}-representation structure of the pure braid group cohomology and the regular representation $\mathbb{Q}\left[S_{n}\right]$.

Theorem 1.3. Let $\mathbf{1}_{n}, \operatorname{Sgn}_{n}$, and $\mathbb{Q}\left[S_{n}\right]$ be the trivial, sign, and regular representations respectively of S_{n} respectively. Then there is an isomorphism of $S_{n^{-}}$ representations,

$$
\bigoplus_{k=0}^{n} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \operatorname{Sgn}_{n}^{\otimes k} \cong \mathbb{Q}\left[S_{n}\right]
$$

Here $\operatorname{Sgn}_{n}^{\otimes k} \cong \mathbf{1}_{n}$ or Sgn_{n} according to whether k is even or odd.
The cohomology groups $H^{k}\left(P_{n}, \mathbb{Q}\right)$ are well studied, and were described as S_{n}-representations in 1986 by Lehrer and Solomon [14, Theorem 4.5] in terms of induced representations $\operatorname{Ind}_{Z}^{S_{n}}\left(\xi_{\lambda}\right)$ for explicitly defined linear characters ξ_{λ} on the centralizers $Z\left(C_{\lambda}\right)$ of conjugacy classes C_{λ} having $n-k$ cycles. However Theorem 1.3 seems not to have been explicitly noted before.

In Section 6 we study representation stability properties of the splitting measure coefficients. For fixed k and varying n, the sequence of S_{n}-representations $H^{k}\left(P_{n}, \mathbb{Q}\right)$ exhibits representation stability in the sense of Church and Farb [6] (see [4], [5]). We show in Proposition 6.2 that the representations A_{n}^{k} are isomorphic to others appearing in the literature known to exhibit representation stability. Hersh and Reiner [11] determine their precise rate of stabilization, yielding the following result.
Theorem 1.4 (Representation stability for A_{n}^{k}). For each fixed $k \geq 1$, the sequence of S_{n}-representations A_{n}^{k} with characters χ_{n}^{k} are representation stable, and stabilize sharply at $n=3 k+1$.

In Section 7 we demonstrate a further manifestation of representation stability, visible in the behavior of the normalized splitting measures ν_{w}. We show that ν_{w} is continuous with respect to stable limits in the following sense: given partitions
$\lambda^{(1)}, \lambda^{(2)}$ we say $\lambda^{(1)} \subseteq \lambda^{(2)}$ if the Young diagram of $\lambda^{(1)}$ fits inside that of $\lambda^{(2)}$. A nested sequence of partitions $\lambda^{(1)} \subseteq \lambda^{(2)} \subseteq \lambda^{(3)} \subseteq \ldots$ is any infinite chain of partitions. We call a nested sequence of partitions $\left(\lambda^{(k)}\right)$ a stable sequence if the lengths $\ell\left(\lambda^{(k)}\right)$ are bounded. Given a stable sequence $\left(\lambda^{(k)}\right)$, let $s \geq 1$ denote the minimal s such that $\left(\lambda_{s}^{(k)}\right)$ is eventually constant, and define its stable limit to be the partition

$$
\operatorname{stablim}_{k \rightarrow \infty} \lambda^{(k)}:=\lim _{k \rightarrow \infty}\left[\lambda_{s}^{(k)}, \lambda_{s+1}^{(k)}, \lambda_{s+2}^{(k)}, \ldots\right],
$$

where the limit on the right hand side is taken componentwise.
Theorem 1.5 (Continuity with respect to stable limits). Suppose $\left(\lambda^{(k)}\right)$ is a stable sequence of partitions, then

$$
\lim _{k \rightarrow \infty} \nu_{w}\left(\lambda^{(k)}\right)=\nu_{w}\left(\operatorname{stablim}_{k \rightarrow \infty} \lambda^{(k)}\right)
$$

where the limit on the left hand side is taken coefficientwise in $\mathbb{Z}[w]$ (i.e. it is a limit viewed in the formal power series ring $\mathbb{Z}[[w]])$ and the limit on the right hand side is the stable limit of a sequence of partitions.

Theorem 1.5 may be interpreted as saying the values of $\chi_{n}^{k}(\lambda)$ on a stable sequence of partitions are eventually constant, hence independent of n for large enough n. The convergence rate is related to the stabilization rate of the representations A_{n}^{k}.

Finally we note that the representation-theoretic interpretation given here raises new questions concerning the splitting measures. For example, is there some direct interpretation of the splitting measures at the parameter values $z= \pm \frac{1}{m}$ that explains their interpretation as scaled characters of representations (resp. virtual representations)?
1.2. Plan of the Paper. In Section 2 we recall properties of the z-splitting measures from [13]. In Section 3 we use the twisted Grothendieck-Lefschetz formula to relate the coefficients of cycle polynomials to the characters of the $S_{n^{-}}$ representations $H^{k}\left(P_{n}, \mathbb{Q}\right)$. In Section 4 we discuss the cohomology $H^{k}\left(P_{n}, \mathbb{Q}\right)$ of the pure braid group P_{n}, and derives an exact sequence leading to the construction of the S_{n}-representations A_{n}^{k}. In Section 5 we express the splitting measure coefficients $\alpha_{n}^{k}\left(C_{\lambda}\right)$ in terms of the character χ_{n}^{k} of the representation A_{n}^{k}. In Section 6 we discuss representation stability and connect the S_{n}-representations A_{n}^{k} with others in the literature. In Section 7 we introduce the normalized splitting measure and prove a continuity property with respect to stable limits.

1.3. Notation.

(1) $q=p^{f}$ always denotes a prime power.
(2) The set of monic, degree n, square-free polynomials in $\mathbb{F}_{q}[x]$ is denoted $\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$.
(3) We write partitions either as $\lambda=\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{\ell}\right]$, with parts $\lambda_{1} \geq \lambda_{2} \geq \cdots$ eventually 0 , or as $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$ where $m_{j}=m_{j}(\lambda)$ is the number of parts of λ of size j. The length of λ is $\ell(\lambda)=\max \left\{r: \lambda_{r} \geq 1\right\}$, the size of λ is $|\lambda|=\sum_{i} \lambda_{i}=\sum_{j} j m_{j}$, and λ_{i} is the i th largest part of λ.
(4) Each partition λ of n corresponds to a conjugacy class C_{λ} of S_{n} given by the common cycle structure of the elements in C_{λ}. We let Z_{λ} denote the centralizer of C_{λ} in S_{n}. The size of the centralizer and conjugacy class are

$$
z_{\lambda}:=\left|Z_{\lambda}\right|=\prod_{j \geq 1} j^{m_{j}(\lambda)} m_{j}(\lambda)!\quad c_{\lambda}:=\left|C_{\lambda}\right|=\frac{n!}{z_{\lambda}}
$$

respectively. Note that $c_{\lambda} z_{\lambda}=n$!.
(5) Following [19], we let $\operatorname{Par}(n)$ denote the set of partitions of n and $\operatorname{Par}=$ $\bigcup_{n} \operatorname{Par}(n)$ the set of all partitions.

2. Splitting Measures

We review the splitting measures introduced in [13], summarize their properties, and introduce the normalized splitting measures.

2.1. Necklace polynomials and cycle polynomials.

Definition 2.1. For $j \geq 1$, the j th necklace polynomial $M_{j}(z) \in \frac{1}{j} \mathbb{Z}[z]$ is

$$
M_{j}(z):=\frac{1}{j} \sum_{d \mid j} \mu(d) z^{j / d},
$$

where $\mu(d)$ is the Möbius function.
Moreau [16] noted in 1872 that for all integers $m \geq 1, M_{j}(m)$ is the number of distinct necklaces having j beads drawn from a set of m colors, up to cyclic permutation. This fact motivated Metropolis and Rota [15] to name them necklace polynomials. Relevant to the present paper, $M_{j}(q)$ is the number of monic, degree j, irreducible polynomials in $\mathbb{F}_{q}[x]$ [17, Prop. 2.1]. The factorization type of a polynomial $f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ is the collection of degrees of its irreducible factors, which we write $[f]$.

Definition 2.2. Given a partition λ of n, the cycle polynomial $N_{\lambda}(z) \in \frac{1}{z_{\lambda}} \mathbb{Z}[z]$ is

$$
N_{\lambda}(z):=\prod_{j \geq 1}\binom{M_{j}(z)}{m_{j}(\lambda)}
$$

where $\binom{\alpha}{m}$ is the usual extension of a binomial coefficient,

$$
\binom{\alpha}{m}:=\frac{1}{m!} \prod_{k=0}^{m-1}(\alpha-k) .
$$

The cycle polynomial $N_{\lambda}(z)$ has degree $n=|\lambda|$ and is integer valued for $z \in \mathbb{Z}$. The number of $f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ with $[f]=\lambda$ is $N_{\lambda}(q)$ (see [13, Sect. 4].)
2.2. z-splitting measures. If λ a partition of n, then the probability of a uniformly chosen $f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ having factorization type λ is

$$
\operatorname{Prob}\left\{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right):[f]=\lambda\right\}=\frac{N_{\lambda}(q)}{\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|}
$$

When $n=1,\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|=q$ and for $n \geq 2$ we have $\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|=q^{n}-q^{n-1}$. (See [17, Prop. 2.3] for a proof via generating functions. A proof due to Zieve appears in [22, Lem. 4.1].) Hence, the probability is a rational function in q. Replacing q by a complex-valued parameter z yields the z-splitting measure.

Definition 2.3. For $n \geq 2$ the z-splitting measure $\nu_{n, z}^{*}\left(C_{\lambda}\right) \in \mathbb{Q}(z)$ is given by

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right):=\frac{N_{\lambda}(z)}{z^{n}-z^{n-1}}
$$

Proposition 2.4. For each partition λ of $n \geq 1$, the rational function $\nu_{n, z}^{*}\left(C_{\lambda}\right)$ is a polynomial in $\frac{1}{z}$ of degree at most $n-1$. Thus it may be written as

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\sum_{k=0}^{n-1} \alpha_{n}^{k}\left(C_{\lambda}\right)\left(\frac{1}{z}\right)^{k}
$$

The function $\nu_{1, z}^{*}\left(C_{1}\right)=1$ is independent of z.
Proof. The case $n=1$ is clear. For $n \geq 2$ we have $N_{\lambda}(1)=0$ by [12, Lemma 2.5], whence $\frac{N_{\lambda}(z)}{z-1}$ is a polynomial of degree at most $n-1$ in z. Therefore,

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\frac{N_{\lambda}(z)}{z^{n}-z^{n-1}}=\frac{1}{z^{n-1}}\left(\frac{N_{\lambda}(z)}{z-1}\right)
$$

is a polynomial in $\frac{1}{z}$ of degree at most $n-1$.
For $n \geq 2$ the Laurent polynomial $\nu_{n, z}^{*}\left(C_{\lambda}\right)$ is of degree at most $n-2$ since $z \mid N_{\lambda}(z)\left(\left[13\right.\right.$, Lemma 4.3]); that is, $\alpha_{n}^{n-1}\left(C_{\lambda}\right)=0$. Tables 1 and 2 give $\nu_{n, z}^{*}\left(C_{\lambda}\right)$, exhibiting the splitting measure coefficients $\alpha_{n}^{k}\left(C_{\lambda}\right)$ for $n=4$ and $n=5$.

λ	c_{λ}	z_{λ}	$\nu_{4, z}^{*}\left(C_{\lambda}\right)$
$[1,1,1,1]$	1	24	$\frac{1}{24}\left(1-\frac{5}{z}+\frac{6}{z^{2}}\right)$
$[2,1,1]$	6	4	$\frac{1}{4}\left(1-\frac{1}{z}\right)$
$[2,2]$	3	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^{2}}\right)$
$[3,1]$	8	3	$\frac{1}{3}\left(1+\frac{1}{z}\right)$
$[4]$	6	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$

TABLE 1. Values of the z-splitting measures $\nu_{4, z}^{*}\left(C_{\lambda}\right)$ on partitions λ of $n=4$.

λ	c_{λ}	z_{λ}	$l_{5, z}^{*}\left(C_{\lambda}\right)$
$[1,1,1,1,1]$	1	120	$\frac{1}{120}\left(1-\frac{9}{z}+\frac{26}{z^{2}}-\frac{24}{z^{3}}\right)$
$[2,1,1,1]$	10	12	$\frac{1}{12}\left(1-\frac{3}{z}+\frac{2}{z^{2}}\right)$
$[2,2,1]$	15	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^{2}}\right)$
$[3,1,1]$	20	6	$\frac{1}{6}\left(1-\frac{1}{z^{2}}\right)$
$[3,2]$	20	6	$\frac{1}{6}\left(1-\frac{1}{z^{2}}\right)$
$[4,1]$	30	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$
$[5]$	24	5	$\frac{1}{5}\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}\right)$

Table 2. Values of the z-splitting measures $\nu_{5, z}^{*}\left(C_{\lambda}\right)$ on partitions λ of $n=5$.

3. Interpretation of Cycle Polynomial Coefficients

The cycle polynomials $N_{\lambda}(z) \in \frac{1}{z_{\lambda}} \mathbb{Z}[z]$ were defined for each partition λ of n in Section 2.1. We express the coefficients of $N_{\lambda}(z)$ in terms of characters h_{n}^{k} of the cohomology of the pure braid group P_{n} viewed as an S_{n}-representation. The connection is made through the twisted Grothendieck-Lefschetz formula of Church, Ellenberg, and Farb [4]. Using explicit formulas for the cycle polynomials we obtain constraints on the support of h_{n}^{k}. We compute $h_{n}^{k}(\lambda)$ for all n in several examples, fixing either the dimension k or the partition λ and varying the other.
3.1. Cohomology of the pure braid group. Given a set X of n distinct points in 3-dimensional affine space, the braid group B_{n} consists of homotopy classes of simple, non-intersecting paths beginning and terminating in X, with concatenation as the group operation. Each element of B_{n} determines a permutation of X, giving a short exact sequence of groups

$$
0 \rightarrow P_{n} \rightarrow B_{n} \xrightarrow{\pi} S_{n} \rightarrow 0 .
$$

Then $P_{n}:=\operatorname{ker} \pi$ is called the pure braid group. P_{n} consists of homotopy classes of simple, non-intersecting loops based in X. The action of S_{n} on X induces an action on P_{n} by permuting the loops. Thus, for each k, the k th group cohomology $H^{k}\left(P_{n}, \mathbb{Q}\right)$ is an S_{n}-representation whose character we denote by h_{n}^{k}.
3.2. Twisted Grothendieck-Lefschetz formula. A character polynomial is a polynomial $P(x) \in \mathbb{Q}\left[x_{j}: j \geq 1\right]$. Character polynomials induce functions $P: \operatorname{Par} \rightarrow$ \mathbb{Q} by

$$
P(\lambda):=P\left(m_{1}(\lambda), m_{2}(\lambda), \ldots\right)
$$

noting that $m_{i}(\lambda)=0$ for all but finitely many i. For $f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ we let $P(f):=P([f])$. Given two \mathbb{Q}-valued functions F and G defined on S_{n} let

$$
\langle F, G\rangle:=\frac{1}{n!} \sum_{\sigma \in S_{n}} F(\sigma) G(\sigma) .
$$

The following Theorem is due to Church, Ellenberg, and Farb [4, Prop. 4.1].
Theorem 3.1 (Twisted Grothendieck-Lefschetz for PConf_{n}). Given a prime power q, an integer $n \geq 1$, and a character polynomial P, we have

$$
\begin{equation*}
\sum_{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{n}(-1)^{k}\left\langle P, h_{n}^{k}\right\rangle q^{n-k} \tag{3.1}
\end{equation*}
$$

where h_{n}^{k} is the character of the cohomology of the pure braid group $H^{k}\left(P_{n}, \mathbb{Q}\right)$.
The classic Lefschetz trace formula counts the fixed points of an endomorphism f on a compact manifold M by the trace of the induced map on the singular cohomology of M. One may interpret the $\overline{\mathbb{F}}_{q}$ points on an algebraic variety V defined over \mathbb{F}_{q} as the fixed points of the geometric Frobenius endomorphism of V. Using the machinery of ℓ-adic étale cohomology, Grothendieck [10] generalized Lefschetz's formula to count the number of points in $V\left(\mathbb{F}_{q}\right)$ by the trace of Frobenius on the étale cohomology of V. For nice varieties V defined over \mathbb{Z}, there are comparison theorems relating the étale cohomology of $V\left(\overline{\mathbb{F}}_{q}\right)$ to the singular cohomology of $V(\mathbb{C})$. This connects the topology of a complex manifold to point counts of a variety over a finite field.

Church, Ellenberg, and Farb [4] build upon Grothendieck's extension of the Lefschetz formula to relate point counts on natural subsets of $\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ to the singular cohomology of the covering space $\operatorname{PConf}_{n}(\mathbb{C}) \rightarrow \operatorname{Conf}_{n}(\mathbb{C}) . \operatorname{PConf}_{n}(\mathbb{C})$ is the space of n distinct, labelled points in \mathbb{C}. The space $\operatorname{PConf}_{n}(\mathbb{C})$ has fundamental group P_{n}, the pure braid group, and is a $K(\pi, 1)$ for this group. Hence, the singular cohomology of $\operatorname{PConf}_{n}(\mathbb{C})$ is the same as the group cohomology of P_{n}. This provides the connection between $\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$ on the left hand side of (3.1) and the character of the pure braid group cohomology on the right hand side.
3.3. Cycle polynomials and pure braid group cohomology. Theorem 3.2 expresses $N_{\lambda}(z)$ in terms of the characters h_{n}^{k} using Theorem 3.1.

Theorem 3.2. Let λ be a partition of n, then

$$
N_{\lambda}(z)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}(\lambda) z^{n-k}
$$

where h_{n}^{k} is the character of the S_{n}-representation $H^{k}\left(P_{n}, \mathbb{Q}\right)$.
Proof. Define the character polynomial $1_{\lambda}(x) \in \mathbb{Q}\left[x_{j}: j \geq 1\right]$ by

$$
1_{\lambda}(x)=\prod_{j \geq 1}\binom{x_{j}}{m_{j}(\lambda)}
$$

Observe that for a partition $\mu \in \operatorname{Par}(n)$ we have

$$
1_{\lambda}(\mu)= \begin{cases}1 & \text { if } \mu=\lambda \\ 0 & \text { otherwise }\end{cases}
$$

Therefore,

$$
N_{\lambda}(q)=\sum_{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)} 1_{\lambda}(f)
$$

On the other hand, by Theorem 3.1 we have

$$
\sum_{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)} 1_{\lambda}(f)=\sum_{k=0}^{n}(-1)^{k}\left\langle 1_{\lambda}, h_{n}^{k}\right\rangle q^{n-k}
$$

If $\sigma \in S_{n}$, let $[\sigma] \in \operatorname{Par}(n)$ be the partition given by the cycle lengths of σ. Thus,

$$
\left\langle 1_{\lambda}, h_{n}^{k}\right\rangle=\frac{1}{n!} \sum_{\sigma \in S_{n}} 1_{\lambda}(\sigma) h_{n}^{k}(\sigma)=\frac{1}{n!} \sum_{\substack{\sigma \in S_{n} \\[\sigma]=\lambda}} h_{n}^{k}(\sigma)=\frac{c_{\lambda}}{n!} h_{n}^{k}(\lambda)=\frac{1}{z_{\lambda}} h_{n}^{k}(\lambda)
$$

Therefore the identity

$$
N_{\lambda}(q)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}(\lambda) q^{n-k}
$$

holds for all prime powers q, giving the identity as polynomials in $\mathbb{Q}[z]$.
Remark. A recent result of Chen [3, Thm. 1] also gives the identity in Theorem 3.2 by specializing at $t=0$.

Recall that for a partition λ of n the cycle polynomial $N_{\lambda}(z)$ is defined by

$$
\begin{equation*}
N_{\lambda}(z)=\prod_{j \geq 1}\binom{M_{j}(z)}{m_{j}(\lambda)} \tag{3.2}
\end{equation*}
$$

where

$$
M_{j}(z)=\frac{1}{j} \sum_{d \mid j} \mu(d) z^{j / d}
$$

is the j th necklace polynomial.
Theorem 3.2 allows us to compute $h_{n}^{k}(\lambda)$ by expanding the explicit formula for $N_{\lambda}(z)$ and comparing coefficients. We illustrate this by deducing constraints on the support of h_{n}^{k} in Proposition 3.3 and computing values of $h_{n}^{k}(\lambda)$ in the examples of Sections 3.5 and 3.6.
3.4. Support restrictions on characters h_{n}^{k}. The character h_{n}^{k} is supported on partitions with at least one small part, while h_{n}^{n-k} is supported on partitions with at most k different parts (staircase partitions with at most k steps).

Proposition 3.3. Let $0 \leq k \leq n$ and h_{n}^{k} be the character of the S_{n}-representation $H^{k}\left(P_{n}, \mathbb{Q}\right)$, then
(1) h_{n}^{k} is supported on partitions having at least one part of size at most $2 k$. The value $h_{n}^{k}(\lambda)$ is determined by $m_{j}(\lambda)$ for $1 \leq j \leq 2 k$.
(2) h_{n}^{n-k} is supported on partitions λ such that $m_{j}(\lambda)>0$ for at most k distinct values of j.

Proof. (1) Theorem 3.2 implies $h_{n}^{k}(\lambda)$ is nonzero iff the coefficient of z^{n-k} in $N_{\lambda}(z)$ is nonzero. The degree of $M_{j}(z)-\frac{1}{j} z^{j}$ is at most $\lfloor j / 2\rfloor$. Hence if $j>2 k$, then the coefficient of z^{n-k} in $\binom{M_{j}(z)}{m_{j}(\lambda)}$ is zero. Thus the only j contributing to the coefficient of z^{n-k} in (3.2) are those with $1 \leq j \leq 2 k$.
(2) Theorem 3.2 implies $h_{n}^{n-k}(\lambda)$ is nonzero iff the coefficient of z^{k} in $N_{\lambda}(z)$ is nonzero. If $m_{j}(\lambda)>0$, then z divides $\binom{M_{j}(z)}{m_{j}(\lambda)}$. Hence if $m_{j}(\lambda)>0$ for more than k values of j, then $h_{n}^{n-k}(\lambda)=0$.

Remark. Property (1) is a manifestation of representation stability. A stronger property of h_{n}^{k} is that it is given by a character polynomial for $n \geq 3 k+1$, see Example 3.7 and Section 6. The determination of these character polynomials remains an open question [9]. Proposition 3.3 bounds which m_{j} may occur in the character polynomial for h_{n}^{k}.
3.5. Character values $h_{n}^{k}(\lambda)$ for fixed λ and varying k. 5 We compute $h_{n}^{k}(\lambda)$ for fixed λ and varying k by expanding the cycle polynomial $N_{\lambda}(z)$.

Example 3.4 (Dimensions of cohomology). The dimension of $H^{k}\left(P_{n}, \mathbb{Q}\right)$ is the value of h_{n}^{k} at the identity element, corresponding to the partition $\left(1^{n}\right)$. Since $M_{1}(z)=z$ and the centralizer of the identity in S_{n} has order $z_{\left(1^{n}\right)}=n!$. We have

$$
N_{\left(1^{n}\right)}(z)=\binom{z}{n}=\frac{1}{n!} \prod_{i=0}^{n-1}(z-i)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k}\left[\begin{array}{c}
n \\
n-k
\end{array}\right] z^{n-k}
$$

where $\left[\begin{array}{c}n \\ n-k\end{array}\right]$ is an unsigned Stirling number of the first kind. Theorem 3.2 says

$$
N_{\left(1^{n}\right)}(z)=\frac{1}{n!} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}\left(\left(1^{n}\right)\right) z^{n-k}
$$

Comparing coefficients recovers the well-known formula for the dimension of the pure braid group cohomology:

$$
\operatorname{dim} H^{k}\left(P_{n}, \mathbb{Q}\right)=h_{n}^{k}\left(\left(1^{n}\right)\right)=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]
$$

This result was observed by Arnol'd [1]. These values are given in Table 3.

Example 3.5. The partition $\lambda=[n]$ corresponds to an n-cycle in S_{n}. The centralizer of an n-cycle has order $z_{[n]}=n$ and

$$
\begin{equation*}
N_{[n]}(z)=\binom{M_{n}(z)}{1}=M_{n}(z)=\frac{1}{n} \sum_{d \mid n} \mu(d) z^{n / d} \tag{3.3}
\end{equation*}
$$

Theorem 3.2 gives us

$$
\begin{equation*}
N_{[n]}(z)=\frac{1}{n} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}([n]) z^{n-k} \tag{3.4}
\end{equation*}
$$

$n \backslash k$	0	1	2	3	4	5	6	7	8
1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	3	2	0	0	0	0	0	0
4	1	6	11	6	0	0	0	0	0
5	1	10	35	50	24	0	0	0	0
6	1	15	85	225	274	120	0	0	0
7	1	21	175	735	1624	1764	720	0	0
8	1	28	322	1960	6769	13132	13068	5040	0
9	1	36	546	4536	22449	67284	118124	109584	40320

TABLE 3. Betti numbers of pure braid group cohomology $H^{k}\left(P_{n}, \mathbb{Q}\right)$.

Comparing coefficients, we find that

$$
h_{n}^{n-k}([n])=\left\{\begin{array}{cl}
(-1)^{n-k} \mu\left(\frac{n}{k}\right) & \text { if } k \mid n \\
0 & \text { if } k \nmid n
\end{array}\right.
$$

Note that the coefficients of $N_{[n]}(z)$ are determined by the multiplicative structure of n in (3.3) and by the additive structure of n in (3.4).
3.6. Character values $h_{n}^{k}(\lambda)$ for fixed k varying λ. We now compute $h_{n}^{k}(\lambda)$ for fixed k and varying λ.

Example 3.6 (Computing h_{n}^{0} and h_{n}^{n}). The cases $k=0$ and n are both constant: $h_{n}^{0}=1$ and $h_{n}^{n}=0$. The leading coefficient of $N_{\lambda}(z)$ is $1 / z_{\lambda}$, hence Theorem 3.2 tells us $h_{n}^{0}(\lambda)=1$ for all λ. For $j \geq 1$, we have $z \mid M_{j}(z)$, from which it follows that $z \mid N_{\lambda}(z)$ for all partitions λ of $n \geq 1$. In other words, for all $m_{j} \geq 1$

$$
\frac{1}{z_{\lambda}}(-1)^{n} h_{n}^{n}(\lambda)=N_{\lambda}(0)=0
$$

Thus $h_{n}^{n}(\lambda)=0$ for all λ, and $H^{n}\left(P_{n}, \mathbb{Q}\right)=0$.
Example 3.7 (Computing h_{n}^{1} and h_{n}^{2}). Taking $\lambda=\left(1^{m_{1}} 2^{m_{2}} \cdots\right)$, a careful analysis of the z^{n-1} and z^{n-2} coefficients in $N_{\lambda}(z)$ and Theorem 3.2 yields the following formulas

$$
\begin{aligned}
& h_{n}^{1}(\lambda)=\binom{m_{1}}{2}+\binom{m_{2}}{1} \\
& h_{n}^{2}(\lambda)=2\binom{m_{1}}{3}+3\binom{m_{1}}{4}+\binom{m_{1}}{2}\binom{m_{2}}{1}-\binom{m_{2}}{2}-\binom{m_{3}}{1}-\binom{m_{4}}{1}
\end{aligned}
$$

where $m_{j}=m_{j}(\lambda)$. These formulas represent h_{n}^{1} and h_{n}^{2} as character polynomials, and they appear in [4, Lemma 4.8]. Note that $h_{n}^{1}(\lambda)=h_{n}^{2}(\lambda)=0$ for partitions λ having all parts larger than 2 and 4 respectively, illustrating Proposition 3.3 (1).

Example 3.8 (Computing h_{n}^{n-1}). The z coefficient of $N_{\lambda}(z)$ determines the value of $h_{n}^{n-1}(\lambda)$. Since each j with $m_{j}(\lambda)>0$ contributes a factor of z to $N_{\lambda}(z), h_{n}^{n-1}$
is supported on partitions of the form $\lambda=\left(j^{m}\right)$. Note that the z coefficient of the necklace polynomial $M_{j}(z)$ is $\mu(j) / j$. Let $\lambda=\left(j^{m}\right)$, then the z coefficient of

$$
N_{\lambda}(z)=\binom{M_{j}(z)}{m}=\frac{M_{j}(z)\left(M_{j}(z)-1\right) \cdots\left(M_{j}(z)-m+1\right)}{m!}
$$

is $(-1)^{m-1} \frac{\mu(j)}{j m}$. Since $z_{\lambda}=j^{m} m$!, we conclude

$$
h_{n}^{n-1}(\lambda)=\left\{\begin{array}{cl}
(-1)^{m-n} \mu(j) j^{m-1}(m-1)! & \text { if } \lambda=\left(j^{m}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

Example 3.9 (Computing h_{n}^{n-2}). The z^{2} coefficient of $N_{\lambda}(z)$ determines $h_{n}^{n-2}(\lambda)$. Proposition 3.3 (2) tells us that $h_{n}^{n-2}(\lambda)=0$ when $m_{j}(\lambda)>0$ for at least three j. We treat the two remaining cases $\lambda=\left(i^{m_{i}} j^{m_{j}}\right)$ and $\lambda=\left(j^{m}\right)$ in turn. If $\lambda=\left(i^{m_{i}} j^{m_{j}}\right)$, then the z coefficient of $\binom{M_{i}(z)}{m_{i}}$ is $(-1)^{m_{i}-1} \frac{\mu(i)}{i m_{i}}$, and similarly for $\binom{M_{j}(z)}{m_{j}}$. We have $z_{\lambda}=\left(i^{m_{i}} m_{i}!\right)\left(j^{m_{j}} m_{j}!\right)$. Thus, by Theorem 3.2

$$
\begin{aligned}
h_{n}^{n-2}\left(\left(i^{m_{1}} j^{m_{j}}\right)\right) & =(-1)^{m_{i}+m_{j}-n} z_{\lambda} \frac{\mu(i) \mu(j)}{\left(i m_{i}\right)\left(j m_{j}\right)} \\
& =(-1)^{m_{i}+m_{j}-n}\left(\mu(i) i^{m_{i}-1}\left(m_{i}-1\right)!\right)\left(\mu(j) j^{m_{j}-1}\left(m_{j}-1\right)!\right)
\end{aligned}
$$

If $\lambda=\left(j^{m}\right)$, then the z^{2} coefficient of $N_{\lambda}(z)$ receives a contribution of $(-1)^{m-1} \frac{\mu(j / 2)}{j m}$ from the quadratic term of $M_{j}(z)$ if j is even. The z coefficient of $\binom{M_{j}(z)}{m_{j}} / M_{j}(z)$ is

$$
\frac{\mu(j)}{j m!}\left(\sum_{i=1}^{m-1} \frac{(-1)^{m-2}(m-1)!}{i}\right)=(-1)^{m} \frac{\mu(j)}{j m} H_{m-1}
$$

where $H_{m-1}=\sum_{i=1}^{m-1} \frac{1}{i}$ denotes the $(m-1)$-th harmonic number. The z coefficient of $M_{j}(z)$ is $\frac{\mu(j)}{j}$. Using the convention that the Möbius function $\mu(\alpha)$ vanishes at non-integral α, we arrive at the following expression for $h_{n}^{n-2}(\lambda)$:

$$
\begin{aligned}
h_{n}^{n-2}\left(\left(j^{m}\right)\right) & =z_{\lambda}(-1)^{m-n} \frac{\left(\mu(j)^{2} H_{m-1}-\mu\left(\frac{j}{2}\right)\right)}{j m} \\
& =(-1)^{m-n}\left(\mu(j)^{2} H_{m-1}-\mu\left(\frac{j}{2}\right)\right) j^{m-1}(m-1)!
\end{aligned}
$$

4. An Exact Sequence of Pure Braid Group Cohomology

Arnol'd [1] gave the following presentation of the cohomology ring $H^{\bullet}\left(P_{n}, \mathbb{Q}\right)$ of the pure braid group P_{n} as an S_{n}-algebra.

Theorem 4.1 (Arnol'd). There is an isomorphism of graded S_{n}-algebras

$$
H^{\bullet}\left(P_{n}, \mathbb{Q}\right) \cong \Lambda^{\bullet}\left[\omega_{i, j}\right] /\left\langle R_{i, j, k}\right\rangle
$$

where $1 \leq i, j, k \leq n$ are distinct, $\omega_{i, j}=\omega_{j, i}$ have degree 1 , and

$$
R_{i, j, k}=\omega_{i, j} \wedge \omega_{j, k}+\omega_{j, k} \wedge \omega_{k, i}+\omega_{k, i} \wedge \omega_{i, j}
$$

An element $\sigma \in S_{n}$ acts on $\omega_{i, j}$ by $\sigma \cdot \omega_{i, j}=\omega_{\sigma(i), \sigma(j)}$.
Proposition 4.2 below uses Theorem 4.1 to construct an exact sequence of the pure braid group cohomology. This allows us to define the sequence A_{n}^{k} of $S_{n^{-}}$ representations whose characters determine the splitting measure coefficients $\alpha_{n}^{k}\left(C_{\lambda}\right)$.

In what follows, we identify $H^{\bullet}\left(P_{n}, \mathbb{Q}\right)$ with this presentation as a quotient of an exterior algebra. The ring $\Lambda^{\bullet}\left[\omega_{i, j}\right] /\left\langle R_{i, j, k}\right\rangle$ is an example of an Orlik-Solomon algebra, which arise as cohomology rings of complements of hyperplane arrangements (see Dimca and Yuzvinsky [8] and Yuzvinsky [23].)
4.1. An exact sequence. Let $\tau=\sum_{1 \leq i<j \leq n} \omega_{i, j} \in H^{1}\left(P_{n}, \mathbb{Q}\right)$. The element τ generates a trivial S_{n}-subrepresentation of $H^{1}\left(P_{n}, \mathbb{Q}\right)$. We define maps d^{k} : $H^{k}\left(P_{n}, \mathbb{Q}\right) \rightarrow H^{k+1}\left(P_{n}, \mathbb{Q}\right)$ for each k by $\nu \mapsto \nu \wedge \tau$. This map is linear and S_{n}-equivariant, since

$$
\sigma \cdot d^{k}(\nu)=\sigma \cdot(\nu \wedge \tau)=(\sigma \cdot \nu) \wedge(\sigma \cdot \tau)=(\sigma \cdot \nu) \wedge \tau=d^{k}(\sigma \cdot \nu) .
$$

From $d^{k+1} \circ d^{k}=0$ we conclude that

$$
0 \rightarrow H^{0}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{0}} H^{1}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H^{n}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{n}} 0
$$

is a chain complex of S_{n}-representations. It follows from the general theory of Orlik-Solomon algebras that the above sequence is exact [8, Thm. 5.2]. We include a proof in this case for completeness.

Proposition 4.2. In the above notation,

$$
\begin{equation*}
0 \rightarrow H^{0}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{0}} H^{1}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{1}} \cdots \xrightarrow{d^{n-1}} H^{n}\left(P_{n}, \mathbb{Q}\right) \xrightarrow{d^{n}} 0 \tag{4.1}
\end{equation*}
$$

is an exact sequence of S_{n}-representations. Set $A_{n}^{k}:=\operatorname{Im}\left(d^{k}\right) \subset H^{k+1}\left(P_{n}, \mathbb{Q}\right)$. Hence we have an isomorphism of S_{n}-representations for each k,

$$
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong A_{n}^{k-1} \oplus A_{n}^{k}
$$

Proof. Arnol'd [1, Cor. 3] describes an additive basis \mathcal{B}_{k} for $H^{k}\left(P_{n}, \mathbb{Q}\right)$ comprised of all simple wedge products

$$
\omega_{i_{1}, j_{1}} \wedge \cdots \wedge \omega_{i_{k}, j_{k}} \text { such that } i_{s}<j_{s} \text { for each } s, \text { and } j_{1}<j_{2}<\ldots<j_{k} .
$$

Let

$$
U_{k}=\left\{\omega_{i_{1}, j_{1}} \wedge \cdots \wedge \omega_{i_{k}, j_{k}} \in \mathcal{B}_{k}:\left(i_{s}, j_{s}\right) \neq(n-1, n)\right\}
$$

for $k>0$ and $U_{0}=\{1\}$. Then set

$$
\mathcal{C}_{k}=U_{k} \cup\left\{\omega \wedge \tau: \omega \in U_{k-1}\right\} .
$$

Claim. \mathcal{C}_{k} is a basis of $H^{k}\left(P_{n}, \mathbb{Q}\right)$.
For example, we have

$$
\mathcal{C}_{1}=\left\{\omega_{i, j}:(i, j) \neq(n-1, n)\right\} \cup\{\tau\},
$$

which is clearly a basis for $H^{1}\left(P_{n}, \mathbb{Q}\right)$.
To prove the claim, since $\left|\mathcal{B}_{k}\right|=\left|\mathcal{C}_{k}\right|$, it suffices to show \mathcal{C}_{k} spans. Note that

$$
\mathcal{B}_{k}=U_{k} \cup\left\{\omega \wedge \omega_{n-1, n}: \omega \in U_{k-1}\right\},
$$

further reducing the problem to expressing $\omega \wedge \omega_{n-1, n}$ as a linear combination of \mathcal{C}_{k} for each $\omega \in U_{k-1}$. Given $\omega=\omega_{i_{1}, j_{1}} \wedge \cdots \wedge \omega_{i_{k-1}, j_{k-1}} \in U_{k-1}$, we use the relation

$$
\omega_{i_{s}, j} \wedge \omega_{i, j}=\omega_{i_{s}, i} \wedge \omega_{i, j}-\omega_{i_{s}, i} \wedge \omega_{i_{s}, j}
$$

to express $\omega \wedge \omega_{i, j}$ in terms of elements of U_{k} as follows:

$$
\omega \wedge \omega_{i, j}= \begin{cases} \pm \omega_{i_{1}, j_{1}} \wedge \cdots \wedge \omega_{i_{s}, j_{s}} & \wedge \omega_{i, j} \wedge \omega_{i_{s+1}, j_{s+1}} \wedge \cdots \wedge \omega_{i_{k-1}, j_{k-1}} \\ & \text { for } j_{s}<j<j_{s+1} \\ \pm \omega_{i_{1}, j_{1}} \wedge \cdots \wedge\left(\omega_{i_{s}, i} \wedge \omega_{i, j}-\omega_{i_{s}, i} \wedge \omega_{i_{s}, j}\right) \wedge \cdots \wedge \omega_{i_{k-1}, j_{k-1}} \\ & \text { for } j_{s}=j, i_{s} \neq i \\ 0 & \text { for }\left(i_{s}, j_{s}\right)=(i, j)\end{cases}
$$

The first and third cases are easily seen to belong in the span of U_{k}. Since $i_{s}, i<j$ and j does not occur twice as a largest subscript in ω, we see inductively that the second case also belongs in the span of U_{k}. Therefore, $\omega \wedge \tau=\omega \wedge \omega_{n-1, n}+\nu$, where ν is in the span of U_{k}. Hence $\omega \wedge \omega_{n-1, n}=\omega \wedge \tau-\nu$ is in the span of \mathcal{C}_{k} and we conclude that \mathcal{C}_{k} is a basis, proving the claim.

We now show the sequence (4.1) is exact. Suppose $\nu \in \operatorname{ker}\left(d^{k}\right)$. Express ν in the basis \mathcal{C}_{k} as

$$
\nu=\sum_{\omega \in U_{k}} a_{\omega} \omega+\sum_{\omega \in U_{k-1}} b_{\omega} \omega \wedge \tau
$$

Then

$$
0=d^{k}(\nu)=\nu \wedge \tau=\sum_{\omega \in U_{k}} a_{\omega} \omega \wedge \tau
$$

Since $\omega \wedge \tau$ is an element of the basis \mathcal{C}_{k+1} for each $\omega \in U_{k}$, we have $a_{\omega}=0$. Hence, $\nu=\mu \wedge \tau=d^{k-1}(\mu)$ where

$$
\mu=\sum_{\omega \in U_{k-1}} b_{\omega} \omega
$$

so $\operatorname{ker}\left(d^{k}\right)=\operatorname{Im}\left(d^{k-1}\right)$.
Recall from Section 3.5 that the dimension of $H^{k}\left(P_{n}, \mathbb{Q}\right)$ is given by an unsigned Stirling number of the first kind

$$
\operatorname{dim}\left(H^{k}\left(P_{n}, \mathbb{Q}\right)\right)=\left[\begin{array}{c}
n \\
n-k
\end{array}\right]
$$

where the unsigned Stirling numbers are determined by the identity $\prod_{k=0}^{n-1}(x+k)=$ $\sum_{k=0}^{n-1}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$. The exact sequence in Proposition 4.2 shows the dimension of A_{n}^{k} is

$$
\operatorname{dim}\left(A_{n}^{k}\right)=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
n \\
n-k+j
\end{array}\right]
$$

Table 4 gives values of $\operatorname{dim}\left(A_{n}^{k}\right)$ for small n and k; here $\operatorname{dim}\left(A_{n}^{n-1}\right)=0$ for $n \geq 2$.

$n \backslash k$	0	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	1	2	0	0	0	0	0	0
4	1	5	6	0	0	0	0	0
5	1	9	26	24	0	0	0	0
6	1	14	71	154	120	0	0	0
7	1	20	155	580	1044	720	0	0
8	1	27	295	1665	5104	8028	5040	0
9	1	35	511	4025	18424	48860	69264	40320

TABLE 4. $\operatorname{dim}\left(A_{n}^{k}\right)$

5. Polynomial splitting measures and characters

We now express the splitting measure coefficients $\alpha_{n}^{k}\left(C_{\lambda}\right)$ in terms of the character values $\chi_{n}^{k}(\lambda)$ where χ_{n}^{k} is the character of the S_{n}-representation A_{n}^{k} constructed in Proposition 4.2. As a corollary we deduce that the rescaled z-splitting measures are characters when $z=-\frac{1}{m}$ and virtual characters when $z=\frac{1}{m}$, generalizing results from [12].

5.1. Expressing splitting measure coefficients by characters. Recall,

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\frac{N_{\lambda}(z)}{z^{n}-z^{n-1}}=\sum_{k=0}^{n-1} \alpha_{n}^{k}\left(C_{\lambda}\right)\left(\frac{1}{z}\right)^{k}
$$

We now express the splitting measure coefficient $\alpha_{n}^{k}\left(C_{\lambda}\right)$ in terms of the character value $\chi_{n}^{k}(\lambda)$.

Theorem 5.1. Let $n \geq 2$ and λ be a partition of n, then

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda)\left(\frac{1}{z}\right)^{k}
$$

where χ_{n}^{k} is the character of the S_{n}-representation A_{n}^{k} defined in Proposition 4.2. Thus,

$$
\alpha_{n}^{k}\left(C_{\lambda}\right)=\frac{1}{z_{\lambda}}(-1)^{k} \chi_{n}^{k}(\lambda)
$$

Proof. In Theorem 3.2 we showed

$$
N_{\lambda}(z)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}(\lambda) z^{n-k}
$$

where h_{n}^{k} is the character of $H^{k}\left(P_{n}, \mathbb{Q}\right)$. The S_{n}-representations A_{n}^{k} were defined in Proposition 4.2 where we showed that

$$
\begin{equation*}
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong A_{n}^{k-1} \oplus A_{n}^{k} \tag{5.1}
\end{equation*}
$$

Taking characters in (5.1) gives

$$
h_{n}^{k}=\chi_{n}^{k-1}+\chi_{n}^{k}
$$

We compute

$$
\begin{aligned}
\frac{N_{\lambda}(z)}{z^{n}} & =\frac{1}{z_{\lambda}} \sum_{k=0}^{n}(-1)^{k} h_{n}^{k}(\lambda)\left(\frac{1}{z}\right)^{k} \\
& =\frac{1}{z_{\lambda}} \sum_{k=0}^{n}(-1)^{k}\left(\chi_{n}^{k-1}(\lambda)+\chi_{n}^{k}(\lambda)\right)\left(\frac{1}{z}\right)^{k} \\
& =\left(1-\frac{1}{z}\right) \frac{1}{z_{\lambda}} \sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda)\left(\frac{1}{z}\right)^{k}
\end{aligned}
$$

Dividing both sides by $\left(1-\frac{1}{z}\right)$ yields

$$
\nu_{n, z}^{*}\left(C_{\lambda}\right)=\frac{N_{\lambda}(z)}{\left(1-\frac{1}{z}\right) z^{n}}=\frac{1}{z_{\lambda}} \sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda)\left(\frac{1}{z}\right)^{k}
$$

Comparing coefficients in the two expressions for $\nu_{n, z}^{*}\left(C_{\lambda}\right)$ we find

$$
\alpha_{n}^{k}\left(C_{\lambda}\right)=\frac{1}{z_{\lambda}}(-1)^{k} \chi_{n}^{k}(\lambda)
$$

5.2. Splitting measures for $z= \pm \frac{1}{m}$. Representation-theoretic interpretations of the rescaled z-splitting measures for $z= \pm 1$ were studied in [12, Sec. 5]. Theorem 1.3 below generalizes those results to give representation-theoretic interpretations for $z= \pm \frac{1}{m}$ when $m \geq 1$ is an integer.
Theorem 5.2. Let $n \geq 2$ and λ be a partition of n, then
(1) For $z=-\frac{1}{m}$ with $m \geq 1$ an integer, we have

$$
\nu_{n,-\frac{1}{m}}^{*}\left(C_{\lambda}\right)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n-1} \chi_{n}^{k}(\lambda) m^{k}
$$

The function $z_{\lambda} \nu_{n,-\frac{1}{m}}^{*}\left(C_{\lambda}\right)$ is therefore the character of the S_{n}-representation

$$
B_{n, m}=\bigoplus_{k=0}^{n-1}\left(A_{n}^{k}\right)^{\oplus m^{k}}
$$

with dimension

$$
\operatorname{dim} B_{n, m}=\prod_{j=2}^{n-1}(1+j m)
$$

(2) For $z=\frac{1}{m}$ with $m \geq 1$ an integer, we have

$$
\nu_{n, \frac{1}{m}}^{*}\left(C_{\lambda}\right)=\frac{1}{z_{\lambda}} \sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda) m^{k}
$$

The function $z_{\lambda} \nu_{n, \frac{1}{m}}^{*}\left(C_{\lambda}\right)$ is a virtual character, the difference of characters of representations $B_{n, m}^{+}{ }_{m}^{m}$ and $B_{n, m}^{-}$,

$$
B_{n, m}^{+} \cong \bigoplus_{2 j<n}\left(A_{n}^{2 j}\right)^{\oplus m^{2 j}} \quad B_{n, m}^{-} \cong \bigoplus_{2 j+1<n}\left(A_{n}^{2 j+1}\right)^{\oplus m^{2 j+1}}
$$

These representations have dimensions

$$
\operatorname{dim} B_{n, m}^{ \pm}=\frac{1}{2}\left(\prod_{j=2}^{n-1}(1+j m) \pm \prod_{j=2}^{n-1}(1-j m)\right)
$$

respectively.
Proof. (1) The formula for the $\left(-\frac{1}{m}\right)$-splitting measure follows by substituting $z=$ $-\frac{1}{m}$ in Theorem 5.1. Arnol'd [1, Cor. 2] gives the Poincaré polynomial $p(w)$ of the pure braid group P_{n} as

$$
p(w)=\prod_{j=1}^{n-1}(1+j w)=\sum_{k=0}^{n} h_{n}^{k}\left(\left(1^{n}\right)\right) w^{k} .
$$

On the other hand, by Theorem 3.2 we have

$$
\begin{equation*}
n!(-1)^{n} w^{n} N_{\left(1^{n}\right)}\left(-w^{-1}\right)=\sum_{k=0}^{n} h_{n}^{k}\left(\left(1^{n}\right)\right) w^{k} . \tag{5.2}
\end{equation*}
$$

Dividing (5.2) by $1+w$ we have

$$
\begin{equation*}
\prod_{j=2}^{n-1}(1+j w)=n!(-1)^{n} w^{n} \frac{N_{\left(1^{n}\right)}\left(-w^{-1}\right)}{1+w}=\sum_{k=0}^{n-1} \chi_{n}^{k}\left(\left(1^{n}\right)\right) w^{k} . \tag{5.3}
\end{equation*}
$$

Substituting $w=m$ gives the dimension formula.
(2) Substituting $z=\frac{1}{m}$ in Theorem 5.1 gives the formula for the $\left(\frac{1}{m}\right)$-splitting measure. Separating the even and odd parts we have

$$
z_{\lambda} \nu_{n, \frac{1}{m}}^{*}\left(C_{\lambda}\right)=\sum_{2 j<n} \chi_{n}^{2 j}(\lambda) m^{2 j}-\sum_{2 j+1<n} \chi_{n}^{2 j+1}(\lambda) m^{2 j+1} .
$$

Hence $z_{\lambda} \nu_{n, \frac{1}{m}}^{*}\left(C_{\lambda}\right)=\chi_{n, m}^{+}(\lambda)-\chi_{n, m}^{-}(\lambda)$, where $\chi_{n, m}^{ \pm}$are characters of $B_{n, m}^{ \pm}$ respectively. The dimension formulas follow from decomposing (5.3) into even and odd parts.

Remark. Other results in [12, Theorems 3.2, 5.2 and 6.1] determine the values of the rescaled splitting measures for $z= \pm 1$, showing they are supported on remarkably few conjugacy classes; for $z=1$ these were the Springer regular elements of S_{n}. Theorem 1.3 does not explain the small support of the characters for $z= \pm 1$. The characters h_{n}^{k} and χ_{n}^{k} have large support in general, hence cancellation must occur to explain the small support. It would be interesting to account for this phenomenon.
5.3. Cohomology of the pure braid group and the regular representation. We use Theorem 5.1 together with the splitting measure values at $z=-1$ computed in [12] to determine a relation between the S_{n}-representation structure of the pure braid group cohomology and the regular representation of S_{n}. Let A_{n}^{k} be the $S_{n^{-}}$ subrepresentation constructed in Proposition 4.2, and define the S_{n}-representation

$$
A_{n}:=\bigoplus_{k=0}^{n-1} A_{n}^{k}
$$

Theorem 5.3. Let $\mathbf{1}_{n}, \operatorname{Sgn}_{n}$, and $\mathbb{Q}\left[S_{n}\right]$ denote the trivial, sign, and regular representations of S_{n} respectively. Then there are isomorphisms of S_{n}-representations,

$$
\bigoplus_{k=0}^{n} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \operatorname{Sgn}_{n}^{\otimes k} \cong \mathbb{Q}\left[S_{n}\right]
$$

and

$$
A_{n} \otimes\left(\mathbf{1}_{n} \oplus \mathbf{S g n}_{n}^{\otimes k}\right) \cong \mathbb{Q}\left[S_{n}\right]
$$

Proof. We showed in Proposition 4.2 that $H^{k}\left(P_{n}, \mathbb{Q}\right) \cong A_{n}^{k-1} \oplus A_{n}^{k}$, with $A_{n}^{-1}=$ $A_{n}^{n}=0$. Therefore, summing over $0 \leq k \leq n$,

$$
A_{n} \cong \bigoplus_{k \text { even }} H^{k}\left(P_{n}, \mathbb{Q}\right) \cong \bigoplus_{k \text { odd }} H^{k}\left(P_{n}, \mathbb{Q}\right)
$$

Since $\operatorname{Sgn}_{n}^{\otimes 2} \cong \mathbf{1}_{n}$, we have

$$
\begin{aligned}
\bigoplus_{k=0}^{n} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \mathbf{S g n}_{n}^{\otimes k} & \cong\left(\bigoplus_{k \text { even }} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \mathbf{1}_{n}\right) \oplus\left(\bigoplus_{k \text { odd }} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \mathbf{S g n}_{n}\right) \\
& \cong\left(A_{n} \otimes \mathbf{1}_{n}\right) \oplus\left(A_{n} \otimes \mathbf{S g n}_{n}\right) \\
& \cong A_{n} \otimes\left(\mathbf{1}_{n} \oplus \mathbf{S g n}_{n}\right)
\end{aligned}
$$

If χ_{n} is the character of A_{n}, then it follows from Theorem 1.3 that

$$
\chi_{n}(\lambda)=\sum_{k=0}^{n-1} \chi_{n}^{k}(\lambda)=z_{\lambda} \nu_{n,-1}^{*}\left(C_{\lambda}\right)
$$

so the values of χ_{n} are given by the rescaled (-1)-splitting measure.
Theorem 6.1 of [12] shows

$$
\nu_{n,-1}^{*}\left(C_{\lambda}\right)= \begin{cases}\frac{1}{2} & \lambda=\left(1^{n}\right) \text { or }\left(1^{n-2} 2\right) \\ 0 & \text { otherwise }\end{cases}
$$

Now let $\rho=\chi_{n} \cdot\left(1_{n}+\operatorname{sgn}_{n}\right)$ be the character of $A_{n} \otimes\left(\mathbf{1}_{n} \oplus \operatorname{Sgn}_{n}\right)$. If $\lambda=\left(1^{n}\right)$, we compute

$$
\rho(\lambda)=\chi_{n}(\lambda)\left(1+\operatorname{sgn}_{n}(\lambda)\right)=n!\nu_{n,-1}^{*}\left(C_{\lambda}\right)(2)=n!
$$

If $\lambda=\left(1^{n-2} 2\right)$, then $\left(1+\operatorname{sgn}_{n}(\lambda)\right)=0$, hence $\rho(\lambda)=0$. If λ is any other partition, then $\nu_{n,-1}^{*}\left(C_{\lambda}\right)=0$, hence $\rho(\lambda)=0$. Therefore ρ agrees with the
character of the regular representation, proving

$$
\bigoplus_{k=0}^{n} H^{k}\left(P_{n}, \mathbb{Q}\right) \otimes \mathbf{S g n}_{n}^{\otimes k} \cong A_{n} \otimes\left(\mathbf{1}_{n} \oplus \mathbf{S g n}_{n}\right) \cong \mathbb{Q}\left[S_{n}\right]
$$

6. Representation Stability

In previous sections we expressed the coefficients of cycle polynomials and splitting measures in terms of characters of S_{n}-representations. These sequences of representations are known to exhibit a phenomenon described by Church and Farb [6] as representation stability.
6.1. Stability of S_{n}-representations. The irreducible representations of S_{n} are naturally parametrized by partitions λ of n. Let \mathcal{S}^{λ} be an irreducible representation of S_{n} corresponding to λ. Say V_{n} is a sequence of finite dimensional $S_{n}{ }^{-}$ representations, and let n_{0} be a fixed positive integer. Then $V_{n_{0}}$ has an irreducible decomposition

$$
V_{n_{0}} \cong \bigoplus_{|\lambda|=n_{0}}\left(\mathcal{S}^{\lambda}\right)^{\oplus e_{\lambda}} .
$$

Following Church and Farb, we say the sequence V_{n} stabilizes at n_{0} if for each $n \geq n_{0}$ we have

$$
V_{n} \cong \bigoplus_{|\lambda|=n_{0}}\left(\mathcal{S}^{\lambda+\left(n-n_{0}\right)}\right)^{\oplus e_{\lambda}},
$$

where for a non-negative integer m the partition $\lambda+m$ is defined as $\left[\lambda_{1}+m, \lambda_{2}, \ldots, \lambda_{\ell}\right.$] when $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right]$. In other words, the sequence V_{n} stabilizes at n_{0} if all the irreducible decompositions of subsequent V_{n} are determined by the decomposition of $V_{n_{0}}$. It stabilizes sharply at n_{0} if n_{0} is the least integer with this property.

If a sequence V_{n} of S_{n}-representations stabilizes, then the characters for V_{n} have a uniform description for all sufficiently large n given by a polynomial character χ_{P} where $P(x) \in \mathbb{Q}\left[x_{j}: j \geq 1\right]$ is a character polynomial. If λ is a partition, then

$$
\chi_{P}(\lambda):=P\left(m_{1}(\lambda), m_{2}(\lambda), \ldots\right),
$$

noting that $m_{j}(\lambda)=0$ for all but finitely many j. If m is the largest index of a variable x_{m} occurring in $P(x)$, then χ_{P} is determined by $m_{j}(\lambda)$ for $j \leq m$.

Church and Farb [6] introduced the notion of representation stability to describe a collection of closely related and frequently observed phenomenon. The pure braid group cohomology $H^{k}\left(P_{n}, \mathbb{Q}\right)$ provided one of their initial examples of representation stability. Recently Hersh and Reiner [11] studied the representation stability of the cohomology of configuration space of n points in \mathbb{R}^{d}, which includes the pure braid group cohomology as the case $d=2$. Their results imply that for fixed k, both sequences $H^{k}\left(P_{n}, \mathbb{Q}\right)$ and A_{n}^{k} stabilize sharply at $n_{0}=3 k+1$, as we state in Theorem 6.3 below.

We illustrate the stability phenomenon through the irreducible decompositions of $H^{k}\left(P_{n}, \mathbb{Q}\right)$ and A_{n}^{k} for $k=1\left(n_{0}=4\right)$ in Table 5 and for $k=2\left(n_{0}=7\right)$ in Table 6 and Table 7.

n	$\operatorname{dim} H^{1}$	$H^{1}\left(P_{n}, \mathbb{Q}\right)$	$\operatorname{dim} A_{n}^{1}$	A_{n}^{1}
2	1	$[2]$	0	0
3	3	$[3] \oplus[2,1]$	2	$[2,1]$
4	6	$[4] \oplus[3,1] \oplus[2,2]$	5	$[3,1] \oplus[2,2]$
5	10	$[5] \oplus[4,1] \oplus[3,2]$	9	$[4,1] \oplus[3,2]$
n	$\left[\begin{array}{c}n \\ n-1\end{array}\right]$	$[n] \oplus[n-1,1] \oplus[n-2,2]$	$\left[\begin{array}{c}n \\ n-1\end{array}\right]-1$	$[n-1,1] \oplus[n-2,2]$

Table 5. Irreducible decompositions for $H^{1}\left(P_{n}, \mathbb{Q}\right)$ and A_{n}^{1}.
Here λ abbreviates the irreducible representation \mathcal{S}^{λ}.

n	$\operatorname{dim} H^{2}$	$H^{2}\left(P_{n}, \mathbb{Q}\right)$
3	2	$[2,1]$
4	11	$2[3,1] \oplus[2,2] \oplus[2,1,1]$
5	35	$2[4,1] \oplus 2[3,2] \oplus 2[3,1,1] \oplus[2,2,1]$
6	85	$2[5,1] \oplus 2[4,2] \oplus 2[4,1,1] \oplus[3,3] \oplus 2[3,2,1]$
7	175	$2[6,1] \oplus 2[5,2] \oplus 2[5,1,1] \oplus[4,3] \oplus 2[4,2,1] \oplus[4,3,1]$
8	322	$2[7,1] \oplus 2[6,2] \oplus 2[6,1,1] \oplus[5,3] \oplus 2[5,2,1] \oplus[4,3,1]$
n	$\left[\begin{array}{c}n \\ n-2\end{array}\right]$	$2[n-1,1] \oplus 2[n-2,2] \oplus 2[n-2,1,1] \oplus[n-3,3]$
		$\oplus 2[n-3,2,1] \oplus[n-4,3,1]$

TABLE 6. Irreducible decomposition for $H^{2}\left(P_{n}, \mathbb{Q}\right)$

n	$\operatorname{dim} A_{n}^{2}$	A_{n}^{2}
3	0	0
4	6	$[3,1] \oplus[2,1,1]$
5	26	$[4,1] \oplus[3,2] \oplus 2[3,1,1] \oplus[2,2,1]$
6	71	$[5,1] \oplus[4,2] \oplus 2[4,1,1] \oplus[3,3] \oplus 2[3,2,1]$
7	155	$[6,1] \oplus[5,2] \oplus 2[5,1,1] \oplus[4,3] \oplus 2[4,2,1] \oplus[3,3,1]$
8	295	$[7,1] \oplus[6,2] \oplus 2[6,1,1] \oplus[5,3] \oplus 2[5,2,1] \oplus[4,3,1]$
n	$\left[\begin{array}{c}n-2]-\left[\begin{array}{c}n \\ n-1\end{array}\right]+1\end{array}\right.$	$[n-1,1] \oplus[n-2,2] \oplus 2[n-2,1,1] \oplus[n-3,3]$
		$\oplus 2[n-3,2,1] \oplus[n-4,3,1]$

TABLE 7. Irreducible decomposition for A_{n}^{2}

The associated character polynomials for $H^{1}\left(P_{n}, \mathbb{Q}\right)$ and $H^{2}\left(P_{n}, \mathbb{Q}\right)$ were given in Example 3.7. In general, given a stable sequence V_{n} of S_{n}-representations, it appears difficult to determine when it sharply stabilizes, and to determine the associated character polynomial [9, Problem 4.7].
6.2. Representation stability for $H^{k}\left(P_{n}, \mathbb{Q}\right)$ and A_{n}^{k}. Let Π_{n} denote the collection of partitions of a set with n elements, partially ordered by refinement (see Stanley [19, Example 3.10.4]).

If $0=C^{0}, C^{1}, C^{2}, \ldots$ is any sequence of semisimple modules with submodules $B^{k} \subseteq C^{k}$, then isomorphisms

$$
C^{k} \cong B^{k-1} \oplus B^{k}
$$

for each k determine the B^{k} up to isomorphism. Finite dimensional S_{n}-representations are semisimple by Maschke's theorem, hence

$$
\begin{equation*}
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong A_{n}^{k-1} \oplus A_{n}^{k} \tag{6.1}
\end{equation*}
$$

determines A_{n}^{k} up to isomorphism.
Hersh and Reiner [11, Sec. 2] describe two other sequences of S_{n}-representations giving direct sum decompositions of $H^{k}\left(P_{n}, \mathbb{Q}\right)$ coming from the Whitney and simplicial homology of the lattice Π_{n}.

Proposition 6.1. (1) There is an isomorphism of S_{n}-representations

$$
\begin{equation*}
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong W H_{k}\left(\Pi_{n}\right) \tag{6.2}
\end{equation*}
$$

where $W H_{k}\left(\Pi_{n}\right)$ is the kth Whitney homology of the lattice Π_{n}.
(2) There is an isomorphism of S_{n}-representations

$$
W H_{k}\left(\Pi_{n}\right) \cong \beta_{[k-1]}\left(\Pi_{n}\right) \oplus \beta_{[k]}\left(\Pi_{n}\right)
$$

where $\beta_{[k]}\left(\Pi_{n}\right)$ is the $[k]=\{1,2, \ldots, k\}$-rank selected homology of the lattice Π_{n}.
(3) There is an isomorphism of S_{n}-representations

$$
\beta_{[k]}\left(\Pi_{n}\right) \cong \widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right)
$$

where Π_{n}^{k} is the sub-poset of $\lambda \in \Pi_{n}$ with $|\lambda|-\ell(\lambda) \leq k$ and $\widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right)$ denotes its reduced simplicial homology.

Proof. (1) This result is due to Sundaram and Welker [21, Theorem 4.4 (iii)], cf. [11, Thm. 2.11, Sec. 2.3]. (See [11, Sec. 2.4] for more on the Whitney homology of Π_{n}.)
(2) Sundaram [20, Prop. 1.9] decomposes $W H_{k}\left(\Pi_{n}\right)$ as

$$
\begin{equation*}
W H_{k}\left(\Pi_{n}\right) \cong \beta_{[k-1]}\left(\Pi_{n}\right) \oplus \beta_{[k]}\left(\Pi_{n}\right) \tag{6.3}
\end{equation*}
$$

where $[k]=\{1,2, \ldots, k\}$ and $\beta_{[k]}\left(\Pi_{n}\right)$ is the $[k]$-rank selected homology of the lattice Π_{n} [11, Prop. 2.17].
(3) Because the lattice Π_{n} is Cohen-Macaulay, Hersh and Reiner note [11, Sec. 2.5] the isomorphism

$$
\begin{equation*}
\beta_{[k]}\left(\Pi_{n}\right) \cong \widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right) \tag{6.4}
\end{equation*}
$$

where Π_{n}^{k} is the sub-poset of $\lambda \in \Pi_{n}$ with $|\lambda|-\ell(\lambda) \leq k$ and $\widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right)$ is its reduced simplicial homology.

The following proposition relates $A_{n}^{k}, \beta_{[k]}\left(\Pi_{n}\right)$, and $\widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right)$ using (6.1).

Proposition 6.2. Let A_{n}^{k} be as defined in Prop. 4.2, Π_{n} be the lattice of partitions of an n-element set, and $\Pi_{n}^{k} \subseteq \Pi_{n}$ the sub-poset comprised of $\lambda \in \Pi_{n}$ with $|\lambda|-\ell(\lambda) \leq k$. Then we have the following isomorphisms of S_{n}-representations

$$
A_{n}^{k} \cong \beta_{[k]}\left(\Pi_{n}\right) \cong \widetilde{H}_{k-1}\left(\Pi_{n}^{k}\right)
$$

Proof. The isomorphisms (6.2) and (6.3) in Proposition 6.1 give the direct sum decompositions

$$
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong \beta_{[k-1]}\left(\Pi_{n}\right) \oplus \beta_{[k]}\left(\Pi_{n}\right)
$$

for $0 \leq k \leq n$. By (6.1) we have that

$$
H^{k}\left(P_{n}, \mathbb{Q}\right) \cong A_{n}^{k-1} \oplus A_{n}^{k}
$$

Since for $k=0$,

$$
\beta_{[-1]}\left(\Pi_{n}\right) \cong A_{n}^{-1}=\{0\}
$$

we obtain by induction on $k \geq 1$ that

$$
A_{n}^{k} \cong \beta_{[k]}\left(\Pi_{n}\right)
$$

Combining this isomorphism with (6.4) finishes the proof.
Hersh and Reiner [11] prove sharp stability results for various sequences of S_{n}-representations related to configuration spaces. We conclude this section by expressing their stability results in our context.

Theorem 6.3 (Stability for splitting measure coefficients). For each $k \geq 1$,
(1) The sequence of S_{n}-representations $H^{k}\left(P_{n}, \mathbb{Q}\right)$, with characters h_{n}^{k}, stabilizes sharply at $n_{0}=3 k+1$.
(2) The sequence of S_{n}-representations A_{n}^{k} with characters χ_{n}^{k}, stabilizes sharply at $n_{0}=3 k+1$.

Proof. (1) This sharp stability result is the special case $d=2$ of [11, Theorem 1.1].
(2) Corollary 4.4 of [11] shows that the sequence $\beta_{[k]}\left(\Pi_{n}\right)$ of S_{n}-representations stabilizes sharply at $n_{0}=3 k+1$. Proposition 6.2 gives the isomorphism $A_{n}^{k} \cong$ $\beta_{[k]}\left(\Pi_{n}\right)$ and the result follows.

7. CONTINUITY OF THE NORMALIZED SPLITTING MEASURE

In this section we introduce the normalized splitting measure and show how it manifests the stability of the splitting measure coefficients through a "continuity property" with respect to certain natural limits defined below.

7.1. Normalized splitting measures.

Definition 7.1. The normalized splitting measure $\nu_{w}: \operatorname{Par} \rightarrow \mathbb{Z}[w]$ is defined on a partition $\lambda \in \operatorname{Par}$ with $|\lambda|=n \geq 2$ by

$$
\nu_{w}(\lambda):=z_{\lambda} \frac{w^{n} N_{\lambda}\left(w^{-1}\right)}{1-w}
$$

and $\nu_{w}(\lambda)=1$ for the unique partition λ of 1 .

The normalized splitting measure $\nu_{w}(\lambda)$ is a polynomial in w with integer coefficients. The normalized splitting measure relates to the z-splitting measure by

$$
\nu_{w}(\lambda)=z_{\lambda} \nu_{|\lambda|, \frac{1}{w}}^{*}\left(C_{\lambda}\right)
$$

All $\nu_{w}(\lambda)$ have constant term 1 , corresponding to the property that the z-splitting measure is the uniform distribution on S_{n} at $z=\infty$. Theorem 5.1 and (7.1) give the following expression for the normalized splitting measure $\nu_{w}(\lambda)$ in terms of the character values $\chi_{n}^{k}(\lambda)$ when $|\lambda|=n$,

$$
\nu_{w}(\lambda)=\sum_{k=0}^{n-1}(-1)^{k} \chi_{n}^{k}(\lambda) w^{k}
$$

In Tables 8 and 9 we give values of $\nu_{n, z}^{*}\left(C_{\lambda}\right)$ and of the normalized splitting measure $\nu_{w}(\lambda)$ for $n=4$ and $n=5$, extending Tables 1 and 2 .

λ	c_{λ}	z_{λ}	$\nu_{4, z}^{*}\left(C_{\lambda}\right)$	$\nu_{w}(\lambda)$
$[1,1,1,1]$	1	24	$\frac{1}{24}\left(1-\frac{5}{z}+\frac{6}{z^{2}}\right)$	$1-5 w+6 w^{2}$
$[2,1,1]$	6	4	$\frac{1}{4}\left(1-\frac{1}{z}\right)$	$1-w$
$[2,2]$	3	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^{2}}\right)$	$1-w-2 w^{2}$
$[3,1]$	8	3	$\frac{1}{3}\left(1+\frac{1}{z}\right)$	$1+w$
$[4]$	6	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$	$1+w$

TABLE 8. Values of the splitting measure $\nu_{4, z}^{*}\left(C_{\lambda}\right)$ and Normalized splitting measure $\nu_{w}(\lambda)$ on partitions λ of for $n=4$.

λ	c_{λ}	z_{λ}	$\nu_{5, z}^{*}\left(C_{\lambda}\right)$	$\nu_{w}(\lambda)$
$[1,1,1,1,1]$	1	120	$\frac{1}{120}\left(1-\frac{9}{z}+\frac{26}{z^{2}}-\frac{24}{z^{3}}\right)$	$1-9 w+26 w^{2}-24 w^{3}$
$[2,1,1,1]$	10	12	$\frac{1}{12}\left(1-\frac{3}{z}+\frac{2}{z^{2}}\right)$	$1-3 w+2 w^{2}$
$[2,2,1]$	15	8	$\frac{1}{8}\left(1-\frac{1}{z}-\frac{2}{z^{2}}\right)$	$1-w-2 w^{2}$
$[3,1,1]$	20	6	$\frac{1}{6}\left(1-\frac{1}{z^{2}}\right)$	$1-w^{2}$
$[3,2]$	20	6	$\frac{1}{6}\left(1-\frac{1}{z^{2}}\right)$	$1-w^{2}$
$[4,1]$	30	4	$\frac{1}{4}\left(1+\frac{1}{z}\right)$	$1+w$
$[5]$	24	5	$\frac{1}{5}\left(1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}\right)$	$1+w+w^{2}+w^{3}$

TABLE 9. Values of the splitting measure $\nu_{5, z}^{*}\left(C_{\lambda}\right)$ and normalized splitting measure values $\nu_{w}(\lambda)$ on partitions λ of $n=5$.
7.2. Stable sequences of partitions. Viewing a partition λ as a non-increasing, eventually zero sequence of non-negative integers, we let λ_{i} denote the i th largest part of λ. We identify partitions with their Young diagrams written in British style. Given two partitions $\lambda^{(1)}, \lambda^{(2)}$, we say $\lambda^{(1)} \subseteq \lambda^{(2)}$ if $\lambda_{i}^{(1)} \leq \lambda_{i}^{(2)}$ for each i, or more visually, if the Young diagram of $\lambda^{(1)}$ fits inside that of $\lambda^{(2)}$. A nested sequence of partitions $\lambda^{(1)} \subseteq \lambda^{(2)} \subseteq \lambda^{(3)} \subseteq \ldots$ is any infinite chain.
Definition 7.2. (1) We call a nested sequence of partitions $\left(\lambda^{(k)}\right)$ a stable sequence if the length sequence $\ell\left(\lambda^{(k)}\right)$ is bounded.
(2) Given a stable sequence $\left(\lambda^{(k)}\right)$, let $s \geq 1$ be minimal such that $\left(\lambda_{s}^{(k)}\right)$ is eventually constant, then we define the stable limit of $\left(\lambda^{(k)}\right)$ to be the partition

$$
\underset{k \rightarrow \infty}{\operatorname{stablim}} \lambda^{(k)}:=\lim _{k \rightarrow \infty}\left[\lambda_{s}^{(k)}, \lambda_{s+1}^{(k)}, \lambda_{s+2}^{(k)}, \ldots\right],
$$

where the limit on the right hand side is taken componentwise.
Example 7.3. (1) The sequence of partitions $\lambda^{(k)}=[k+4, k+3,3,2,1]$ is a stable sequence, since $\ell\left(\lambda^{(k)}\right)=5$ for each k.

The smallest s for which $\left(\lambda_{s}^{(k)}\right)$ is bounded is $s=3$. The stable limit of $\left(\lambda^{(k)}\right)$ is

$$
\underset{k \rightarrow \infty}{\operatorname{stablim}} \lambda^{(k)}=[3,2,1]=\square
$$

(2) The staircase sequence $\mu^{(k)}=[k, k-1, k-2, \ldots, 1]$ is not a stable sequence since $\ell\left(\mu^{(k)}\right)=k$ is unbounded.

$$
\mu^{(1)}=\square \quad \mu^{(3)}=\square \square \quad \mu^{(5)}=\square \square
$$

Remark. Stable sequences of partitions can have sequences of blocks going to infinity at different rates, e.g. $\mu^{(k)}=\left[k^{2}+4, k+3,3,2,1\right]$ is a stable sequence having the same stable limit as $\lambda^{(k)}=[k+4, k+3,3,2,1]$.
7.3. Continuity with respect to stable limits. Recall from Section 7.1 that the normalized splitting measure ν_{w} defined by

$$
\nu_{w}(\lambda)=z_{\lambda} \frac{w^{n} N_{\lambda}\left(w^{-1}\right)}{1-w},
$$

where $\lambda \in \operatorname{Par}$ is a partition.

We show that the normalized splitting measure ν_{w} is continuous with respect to stable limits. Before stating the precise result we demonstrate with an example.
Example 7.4. Consider the stable sequence $\lambda^{(k)}=[k+2,2,2,1]$.

We compute values of $\nu_{w}\left(\lambda^{(k)}\right)$ in Table 10.

$\lambda^{(k)}$	$\nu_{w}\left(\lambda^{(k)}\right)$
$\lambda^{(1)}$	$1-w-3 w^{2}+O\left(w^{3}\right)$
$\lambda^{(10)}$	$1-w-2 w^{2}+O\left(w^{6}\right)$
$\lambda^{(100)}$	$1-w-2 w^{2}+O\left(w^{51}\right)$
$\lambda^{(1000)}$	$1-w-2 w^{2}+O\left(w^{501}\right)$

TABLE 10. Values of $\nu_{w}\left(\lambda^{(k)}\right)$ for $\lambda^{(k)}=[k+2,2,2,1]$.

The sequence $\nu_{w}\left(\lambda^{(k)}\right)$ appears to converge coefficientwise to the limit $1-w-$ $2 w^{2}$. This convergence can be viewed in the formal power series ring $\mathbb{Z}[[w]]$, i.e. the w-adic completion of $\mathbb{Z}[w]$. Observe that $\lambda:=\operatorname{stablim}_{k \rightarrow \infty} \lambda^{(k)}=[2,2,1]$ has normalized measure $\nu_{w}(\lambda)=1-w-2 w^{2}$. In other words,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \nu_{w}\left(\lambda^{(k)}\right)=\nu_{w}\left(\operatorname{stablim}_{k \rightarrow \infty} \lambda^{(k)}\right), \tag{7.1}
\end{equation*}
$$

where the limit on the left hand side is taken coefficientwise in $\mathbb{Z}[w]$ and the limit on the right hand side is the stable limit of the sequence $\left(\lambda^{(k)}\right)$ of partitions.

Theorem 7.5 (Continuity of ν_{w} with respect to stable limits). Suppose $\left(\lambda^{(k)}\right)$ is a stable sequence of partitions, then

$$
\lim _{k \rightarrow \infty} \nu_{w}\left(\lambda^{(k)}\right)=\nu_{w}\left(\underset{k \rightarrow \infty}{\operatorname{stablim}} \lambda^{(k)}\right),
$$

where the limit on the left hand side is taken coefficientwise in $\mathbb{Z}[w]$ and the limit on the right hand side is the stable limit of a sequence of partitions.

Proof. All limits of sequences of polynomials in $\mathbb{Z}[w]$ are taken coefficientwise, i.e. are limits in the formal power series ring $\mathbb{Z}[[w]]$. We first claim that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} j w^{j} M_{j}\left(w^{-1}\right)=1 \tag{7.2}
\end{equation*}
$$

Recalling the definition of the j th necklace polynomial, we compute

$$
j w^{j} M_{j}\left(w^{-1}\right)=\sum_{d \mid j} \mu(d) w^{j\left(1-\frac{1}{d}\right)}=1+\sum_{\substack{d \mid j \\ d \neq 1}} \mu(d) w^{j\left(1-\frac{1}{d}\right)}
$$

Since $d \geq 2,\left(1-\frac{1}{d}\right) \geq \frac{1}{2}$, and thus

$$
\begin{equation*}
w^{j / 2} \mid j w^{j} M_{j}\left(w^{-1}\right)-1 \tag{7.3}
\end{equation*}
$$

giving the limit (7.2). Next we claim that for any integer $m \geq 1$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} j^{m} m!w^{j m}\binom{M_{j}\left(w^{-1}\right)}{m}=1 \tag{7.4}
\end{equation*}
$$

This follows from (7.2) after writing

$$
j^{m} m!w^{j m}\binom{M_{j}\left(w^{-1}\right)}{m}=\prod_{k=0}^{m-1}\left(j w^{j} M_{j}\left(w^{-1}\right)-j w^{j} k\right)
$$

and taking the limit of each factor.
If $\left(\lambda^{(k)}\right)$ is a stable sequence with s minimal such that $\left(\lambda_{s}^{(k)}\right)$ is eventually constant, set $\lambda:=\operatorname{stablim}_{k \rightarrow \infty} \lambda^{(k)}$. Then $\lambda_{s}:=\lim _{k \rightarrow \infty} \lambda_{s}^{(k)}$ is the largest part of λ. We compute

$$
\begin{equation*}
(1-w) \lim _{k \rightarrow \infty} \nu_{w}\left(\lambda^{(k)}\right)=\prod_{j \geq 1} \lim _{k \rightarrow \infty} j^{m_{j}\left(\lambda_{k}\right)} m_{j}\left(\lambda_{k}\right)!w^{j m_{j}\left(\lambda_{k}\right)}\binom{M_{j}\left(w^{-1}\right)}{m_{j}\left(\lambda^{(k)}\right)} \tag{7.5}
\end{equation*}
$$

For any $j \leq \lambda_{s}$,

$$
\lim _{k \rightarrow \infty} m_{j}\left(\lambda_{k}\right)=m_{j}(\lambda)
$$

hence the the limit of the factors in (7.5) stabilizes. If $j>\lambda_{s}$ then $m_{j}\left(\lambda_{k}\right)=0$ for all sufficiently large k, hence these factors in (7.5) all tend to 1 by (7.3).

Therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \nu_{w}\left(\lambda^{(k)}\right) & =\frac{1}{1-w} \prod_{1 \leq j \leq \lambda_{s}} j^{m_{j}(\lambda)} m_{j}(\lambda)!w^{j m_{j}(\lambda)}\binom{M_{j}\left(w^{-1}\right)}{m_{j}(\lambda)} \\
& =\nu_{w}\left(\operatorname{stablim}_{n \rightarrow \infty} \lambda^{(k)}\right)
\end{aligned}
$$

Acknowledgments. We thank Richard Stanley for raising a question about the relation of the braid group cohomology to the regular representation, answered by Theorem 1.3. We thank Philip Tosteson and John Wiltshire-Gordon for helpful conversations.

REFERENCES

[1] V. I. Arnol'd, The cohomology ring of the colored braid group, Math. Notes. 5 (1969), 138-140. [English translation of: Mat. Zametki 5 (1969), 227-231.]
[2] M. Bhargava. Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants. Int. Math. Res. Not. IMRN, 2007, no. 17, Art. ID rnm052, 20pp.
[3] W. Chen, Twisted cohomology of configuration spaces and spaces of maximal tori via pointcounting. eprint: arXiv:1603.03931
[4] T. Church, J. S. Ellenberg and B. Farb, Representation stability in cohomology and asymptotics for families of varieties over finite fields, Algebraic topology: applications and new directions, 1-54. Contemp. Math. 620, Amer. Math. Soc., Providence, RI, 2014.
[5] T. Church, J. S. Ellenberg and B. Farb, FI-modules and stability for representations of symmetric groups. Duke Math. J. 164 (2015), no. 9, 1833-1910.
[6] T. Church and B. Farb, Representation theory and homological stability, Advances in Math. 245 (2013), 250-314.
[7] R. Dedekind. Über Zusammenhang zwischen der Theorie der Ideale und der Theorie der höhere Kongruenzen, Abh. König. Ges. der Wissen. zu Göttingen 23 (1878), 1-23.
[8] A. Dimca and S. Yuzvinsky, Lectures on Orlik-Solomon algebras, Arrangements, local systems and singularities, Progr. Math., 283 Birkhäuser Verlag, Basel, (2010), 83-110.
[9] B. Farb, Representation stability, Proceedings of the 2014 ICM, Seoul: Korea. eprint: arXiv:1404.4065.
[10] A.Grothendieck, Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à 11, Volume 1960/61 of Séminaire de Géomeétrie Albebrique. IHES, Paris 1963.
[11] P. Hersh and V. Reiner, Representation stability for cohomology of configuration spaces in \mathbb{R}^{d}. (Appendix joint with Steven Sam). eprint: arXiv:1505.04196v2
[12] J. C. Lagarias, A family of measures on symmetric groups and the field with one element, J. Number Theory 161 (2016), 311-342.
[13] J. C. Lagarias and B. L. Weiss, Splitting behavior of S_{n} polynomials, Research in Number Theory 1 (2015), paper 9, 30pp.
[14] G. I. Lehrer and L. Solomon, On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplanes, J. Algebra 104 (1986), no. 2, 410-424.
[15] N. Metropolis and G.-C. Rota. Witt vectors and the algebra of necklaces, Advances in Math. 50, 95-125, 1983.
[16] C. Moreau, Sur les permutations circulaires distinctes, Nouvelles annales de mathématiques, journal des candidats aux écoles polytechnique et normale, Sér. 2, 11 (1872), 309-314.
[17] M. Rosen. Number theory in function fields, volume 210 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.
[18] B. Sagan, The cyclic sieving phenomenon: a survey, pp. 183-234 in: Surveys in Combinatorics 2011, (R. Chapman, Ed.), London Math. Soc. Lecture Notes, Vol. 392, Cambridge University Press: Cambridge 2011.
[19] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1986 original.
[20] S. Sundaram, The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice, Adv. Math. 104 (1994), 225-296.
[21] S. Sundaram and V. Welker, Group actions on arrangements of linear subspaces and applications to configuration spaces, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1389-1420.
[22] B. L. Weiss, Probabilistic Galois theory over p-adic fields, J. Number Theory 133 (2013), 15371563.
[23] S. Yuzvinsky, Orlik-Solomon algebras in algebra, topology and geometry, Russian Math. Surveys 56 (2001), 294-364.

Dept. of Mathematics, University of Michigan, Ann Arbor, Mi 48109-1043,
E-mail address: tghyde@umich.edu
Dept. of Mathematics, University of Michigan, Ann Arbor, Mi 48109-1043,
E-mail address: lagarias@umich.edu

[^0]: Date: April 18, 2016.
 1991 Mathematics Subject Classification. Primary 11R09; Secondary 11R32, 12E20, 12E25.
 Work of the second author was partially supported by NSF grant DMS-1401224.

[^1]: ${ }^{1}$ Their definition shows they are rational functions having no poles on $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1\}$, and $[12$, Lemma 2.5] observed they have no poles at $z=1$, cf. Proposition 2.4.

