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ABSTRACT. We study for each n a one-parameter family of complex-valued
measures on the symmetric group Sn, which interpolate the probability of a
monic, degree n, square-free polynomial in Fq[x] having a given factorization
type. For a fixed factorization type, indexed by a partition λ of n, the measure is
known to be a Laurent polynomial. We express the coefficients of this polyno-
mial in terms of characters associated to Sn-subrepresentations of the cohomol-
ogy of the pure braid group H•(Pn,Q). We deduce that the splitting measures
for all parameter values z = − 1

m

(
resp. z = 1

m

)
, after rescaling, are characters

of Sn-representations (resp. virtual Sn-representations.)

1. INTRODUCTION

The purpose of this paper is to study for each n ≥ 1 a one-parameter family
of complex-valued measures on the symmetric group Sn arising from a problem
in number theory, and to exhibit an explicit representation-theoretic connection
between these measures and the characters of the natural Sn-action on the rational
cohomology of the pure braid group Pn.

This family of measures, denoted ν∗n,z , was introduced by the second author
and B. Weiss in [13], where they were called z-splitting measures, with parameter
z ∈ C. The measures interpolate from prime power values z = q the probability
of a monic, degree n, square-free polynomial in Fq[x] having a given factorization
type. Square-free factorization types are indexed by partitions λ of n specifying the
degrees of the irreducible factors. Each partition λ of n corresponds to a conjugacy
class Cλ of the symmetric group Sn; distributing the probability of a factorization
of type λ equally across the elements of Cλ defines a probability measure on Sn. A
key property of the resulting probabilities is that for a fixed partition λ, their values
are described by a rational function in the size of the field Fq as q varies. This
permits interpolation from q to a parameter z ∈ P1(C), from which one obtains the
family of complex-valued measures ν∗n,z on Sn given in Definition 2.3 below.

On the number theory side, these measures connect with problems on the split-
ting of ideals in Sn-number fields, which are degree n number fields formed by
adjoining a root of a degree n polynomial over Z[x] whose splitting splitting field
has Galois group Sn. The paper [13, Theorem 2.6] observed that for primes p < n
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these measures vanish on certain conjugacy classes, corrensponding to the phe-
nomenon of essential discriminant divisors of polynomials having Galois group
Sn, first noted by Dedekind [7] in 1878. These measures converge to the uniform
measure on the symmetric group as z = p → ∞, and in this limit agree with a
conjecture of Bhargava [2, Conjecture 1.3] on the distribution of splitting types of
the prime p in Sn-extensions of discriminant |D| ≤ B as the bound B → ∞,
conditioned on (D, p) = 1.

The second author [12] subsequently studied these measures at the special value
z = 1 as representing splitting probabilities for polynomials over the (hypothet-
ical) “field with one element F1.” The splitting measures at z = 1 are signed
measures for n ≥ 3, unlike all other nonzero integral values of z. The 1-splitting
measures are supported on a small set of conjugacy classes, the Springer regular
elements of Sn (those conjugacy classes Cλ for which λ has a rectangular Young
diagram or a rectangle plus a single box.) Viewed as class functions on Sn, rather
than as measures, they were found to have a representation-theoretic interpretation:
after rescaling by n!, they are virtual characters of Sn corresponding to explicitly
determined representations. As n varies, their values on conjugacy classes were
observed to have arithmetic properties compatible with the multiplicative structure
of n; letting n =

∏
p p

ep be the canonical prime factorization of n, the measure’s
value on each conjugacy class factors corresponding to values on certain conjugacy
classes of the smaller symmetric groups Spep . That paper also showed the rescaled
z-splitting measures at z = −1 have a representation-theoretic interpretation.

These observations motivate further investigation of these measures, to locate
a source for the connection with the representation theory of Sn. In this paper
we find a representation-theoretic structure that extends to the entire family of z-
splitting measures. Our starting point is the observation1 that for a fixed conjugacy
class the z-splitting measures are Laurent polynomials in z, cf. They have degree
at most n− 1, so may be written

ν∗n,z(Cλ) =
n−1∑
k=0

αkn(Cλ)
(
1
z

)k
,

with coefficients αkn(Cλ), where λ is a partition of n and each αkn(Cλ) is a ra-
tional number. We call the αkn(Cλ) splitting measure coefficients. The novel ob-
servation of this paper is that each separate splitting measure coefficient αkn(Cλ),
viewed as a function of λ, is a rescaled version of the character χkn of a certain
Sn-subrepresentation Akn of the cohomology of the pure braid group Hk(Pn,Q).
The pure braid groups Pn and their cohomology are discussed in Section 4, and the
subrepresentations Akn described. We deduce as a consequence that the rescaled z-
splitting measure is a character of Sn at z = − 1

m and is a virtual character of Sn
at z = 1

m , for all integers m ≥ 1 (Theorem 5.2). This extends the representation-
theoretic connection of [12] for z = ±1 to the parameter values z = ± 1

m for all
m ≥ 1.

1Their definition shows they are rational functions having no poles on P1(C) r {0, 1}, and [12,
Lemma 2.5] observed they have no poles at z = 1, cf. Proposition 2.4.
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1.1. Results. The z-splitting measure on a conjugacy classCλ of Sn is the rational
function of z

ν∗n,z(Cλ) :=
Nλ(z)

zn − zn−1
,

where Nλ(z) ∈ Q[z] denotes the cycle polynomial associated to a partition λ de-
scribing the cycle lengths of Cλ. Given λ =

(
1m1(λ)2m2(λ) · · ·nmn(λ)

)
, the asso-

ciated cycle polynomial is

Nλ(z) :=
∏
j≥1

(
Mj(z)

mj(λ)

)
, (1.1)

whereMj(z) denotes the jth necklace polynomial. The necklace polynomialMj(z)
of order j is given by

Mj(z) :=
1

j

∑
d|j

µ(d)zj/d.

where µ(d) is the Möbius function.
To avoid confusion we make a remark on normalizations. Given a class function

f on Sn we write f(Cλ) for the sum of the values of f onCλ and f(λ) for the value
f(g) taken at one element g ∈ Cλ; the latter notation is standard for characters.
Thus ν∗n,z(Cλ) = |Cλ|ν∗n,z(λ). With this in mind, in Section 7.1 we introduce the
normalized splitting measure νw, defined uniformly on partitions of any size, by

νw(λ) :=
n!

|Cλ|
wnNλ(w−1)

1− w
.

Each νw(λ) is a polynomial in w with integer coefficients and constant term 1.
In Section 3 we express the family of cycle polynomialsNλ(z) in terms of char-

acters of the cohomology of the pure braid groupPn viewed as an Sn-representation.

Theorem 1.1 (Character interpretation of cycle polynomial coefficients). Let λ be
a partition of n and Nλ(z) be a cycle polynomial. Then

Nλ(z) =
|Cλ|
n!

n∑
k=0

(−1)khkn(λ)zn−k.

where hkn is the character of the kth cohomology of the pure braid groupHk(Pn,Q),
viewed as an Sn-representation.

Theorem 1.1 is proven in Section 3 (as Theorem 3.2) using the twisted Grothendieck-
Lefschetz formula of Church, Ellenberg, and Farb [4, Prop. 4.1]. Comparing this
formula for Nλ(z) with (1.1), we deduce many properties of the characters hkn in
an elementary fashion.

In Section 4 we review the pure braid group and its cohomology, and derive an
exact sequence producing Sn-subrepresentations Akn of Hk(Pn,Q). The main re-
sult of this paper, given in the Section 5, is an expression of the z-splitting measures
ν∗n,z in terms of the characters χkn of Akn.
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Theorem 1.2 (Character interpretation of splitting measure coefficients). For each
n ≥ 1 and 0 ≤ k ≤ n − 1 there is an Sn-subrepresentation Akn of Hk(Pn,Q)
(constructed explicitly in Proposition 4.2) with character χkn such that for each
partition λ of n,

ν∗n,z(Cλ) =
|Cλ|
n!

n−1∑
k=0

(−1)kχkn(λ)
(
1
z

)k
.

Thus the splitting measure coefficient αkn(Cλ) is

αkn(Cλ) = |Cλ|αkn(λ) = (−1)k
|Cλ|
n!

χkn(λ).

We obtain in Section 5.2 a corollary of this result: For z = − 1
m with m ≥

1, the rescaled splitting measure itself n!
|Cλ|ν

k
n,z(Cλ) is the character of an Sn-

representation, and when z = 1
m it is the character of a virtual Sn-representation.

In Section 5.3 we use Theorem 1.2 and values of the (−1)-splitting measure
computed in [12] to prove the following relation between the Sn-representation
structure of the pure braid group cohomology and the regular representation Q[Sn].

Theorem 1.3. Let 1n, Sgnn, and Q[Sn] be the trivial, sign, and regular repre-
sentations respectively of Sn respectively. Then there is an isomorphism of Sn-
representations,

n⊕
k=0

Hk(Pn,Q)⊗ Sgn⊗kn
∼= Q[Sn].

Here Sgn⊗kn
∼= 1n or Sgnn according to whether k is even or odd.

The cohomology groups Hk(Pn,Q) are well studied, and were described as
Sn-representations in 1986 by Lehrer and Solomon [14, Theorem 4.5] in terms
of induced representations IndSnZ (ξλ) for explicitly defined linear characters ξλ on
the centralizers Z(Cλ) of conjugacy classes Cλ having n − k cycles. However
Theorem 1.3 seems not to have been explicitly noted before.

In Section 6 we study representation stability properties of the splitting mea-
sure coefficients. For fixed k and varying n, the sequence of Sn-representations
Hk(Pn,Q) exhibits representation stability in the sense of Church and Farb [6]
(see [4], [5]). We show in Proposition 6.2 that the representations Akn are isomor-
phic to others appearing in the literature known to exhibit representation stability.
Hersh and Reiner [11] determine their precise rate of stabilization, yielding the
following result.

Theorem 1.4 (Representation stability forAkn). For each fixed k ≥ 1, the sequence
of Sn-representations Akn with characters χkn are representation stable, and stabi-
lize sharply at n = 3k + 1.

In Section 7 we demonstrate a further manifestation of representation stability,
visible in the behavior of the normalized splitting measures νw. We show that νw
is continuous with respect to stable limits in the following sense: given partitions
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λ(1), λ(2) we say λ(1) ⊆ λ(2) if the Young diagram of λ(1) fits inside that of λ(2).
A nested sequence of partitions λ(1) ⊆ λ(2) ⊆ λ(3) ⊆ . . . is any infinite chain of
partitions. We call a nested sequence of partitions

(
λ(k)

)
a stable sequence if the

lengths `
(
λ(k)

)
are bounded. Given a stable sequence

(
λ(k)

)
, let s ≥ 1 denote the

minimal s such that
(
λ
(k)
s

)
is eventually constant, and define its stable limit to be

the partition
stablim
k→∞

λ(k) := lim
k→∞

[
λ(k)s , λ

(k)
s+1, λ

(k)
s+2, . . .

]
,

where the limit on the right hand side is taken componentwise.

Theorem 1.5 (Continuity with respect to stable limits). Suppose
(
λ(k)

)
is a stable

sequence of partitions, then

lim
k→∞

νw
(
λ(k)

)
= νw

(
stablim
k→∞

λ(k)
)
,

where the limit on the left hand side is taken coefficientwise in Z[w] (i.e. it is a limit
viewed in the formal power series ring Z[[w]]) and the limit on the right hand side
is the stable limit of a sequence of partitions.

Theorem 1.5 may be interpreted as saying the values of χkn(λ) on a stable se-
quence of partitions are eventually constant, hence independent of n for large
enough n. The convergence rate is related to the stabilization rate of the repre-
sentations Akn.

Finally we note that the representation-theoretic interpretation given here raises
new questions concerning the splitting measures. For example, is there some di-
rect interpretation of the splitting measures at the parameter values z = ± 1

m that
explains their interpretation as scaled characters of representations (resp. virtual
representations)?

1.2. Plan of the Paper. In Section 2 we recall properties of the z-splitting mea-
sures from [13]. In Section 3 we use the twisted Grothendieck-Lefschetz for-
mula to relate the coefficients of cycle polynomials to the characters of the Sn-
representations Hk(Pn,Q). In Section 4 we discuss the cohomology Hk(Pn,Q)
of the pure braid group Pn, and derives an exact sequence leading to the construc-
tion of the Sn-representations Akn. In Section 5 we express the splitting measure
coefficients αkn(Cλ) in terms of the character χkn of the representation Akn. In Sec-
tion 6 we discuss representation stability and connect the Sn-representations Akn
with others in the literature. In Section 7 we introduce the normalized splitting
measure and prove a continuity property with respect to stable limits.

1.3. Notation.
(1) q = pf always denotes a prime power.
(2) The set of monic, degree n, square-free polynomials in Fq[x] is denoted Confn(Fq).
(3) We write partitions either as λ =

[
λ1, λ2, · · · , λ`

]
, with parts λ1 ≥ λ2 ≥ · · ·

eventually 0, or as λ = (1m12m2 · · · ) where mj = mj(λ) is the number of
parts of λ of size j. The length of λ is `(λ) = max{r : λr ≥ 1}, the size of λ
is |λ| =

∑
i λi =

∑
j jmj , and λi is the ith largest part of λ.
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(4) Each partition λ of n corresponds to a conjugacy class Cλ of Sn given by the
common cycle structure of the elements inCλ. We letZλ denote the centralizer
of Cλ in Sn. The size of the centralizer and conjugacy class are

zλ := |Zλ| =
∏
j≥1

jmj(λ)mj(λ)! cλ := |Cλ| =
n!

zλ

respectively. Note that cλzλ = n!.
(5) Following [19], we let Par(n) denote the set of partitions of n and Par =⋃

n Par(n) the set of all partitions.

2. SPLITTING MEASURES

We review the splitting measures introduced in [13], summarize their properties,
and introduce the normalized splitting measures.

2.1. Necklace polynomials and cycle polynomials.

Definition 2.1. For j ≥ 1, the jth necklace polynomial Mj(z) ∈ 1
jZ[z] is

Mj(z) :=
1

j

∑
d|j

µ(d)zj/d,

where µ(d) is the Möbius function.

Moreau [16] noted in 1872 that for all integers m ≥ 1, Mj(m) is the number
of distinct necklaces having j beads drawn from a set of m colors, up to cyclic
permutation. This fact motivated Metropolis and Rota [15] to name them necklace
polynomials. Relevant to the present paper, Mj(q) is the number of monic, degree
j, irreducible polynomials in Fq[x] [17, Prop. 2.1]. The factorization type of a
polynomial f ∈ Confn(Fq) is the collection of degrees of its irreducible factors,
which we write [f ].

Definition 2.2. Given a partition λ of n, the cycle polynomial Nλ(z) ∈ 1
zλ
Z[z] is

Nλ(z) :=
∏
j≥1

(
Mj(z)

mj(λ)

)
,

where
(
α
m

)
is the usual extension of a binomial coefficient,(

α

m

)
:=

1

m!

m−1∏
k=0

(α− k).

The cycle polynomialNλ(z) has degree n = |λ| and is integer valued for z ∈ Z.
The number of f ∈ Confn(Fq) with [f ] = λ is Nλ(q) (see [13, Sect. 4].)
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2.2. z-splitting measures. If λ a partition of n, then the probability of a uniformly
chosen f ∈ Confn(Fq) having factorization type λ is

Prob{f ∈ Confn(Fq) : [f ] = λ} =
Nλ(q)

|Confn(Fq)|
.

When n = 1, |Confn(Fq)| = q and for n ≥ 2 we have |Confn(Fq)| = qn − qn−1.
(See [17, Prop. 2.3] for a proof via generating functions. A proof due to Zieve
appears in [22, Lem. 4.1].) Hence, the probability is a rational function in q.
Replacing q by a complex-valued parameter z yields the z-splitting measure.

Definition 2.3. For n ≥ 2 the z-splitting measure ν∗n,z(Cλ) ∈ Q(z) is given by

ν∗n,z(Cλ) :=
Nλ(z)

zn − zn−1
.

Proposition 2.4. For each partition λ of n ≥ 1, the rational function ν∗n,z(Cλ) is
a polynomial in 1

z of degree at most n− 1. Thus it may be written as

ν∗n,z(Cλ) =

n−1∑
k=0

αkn(Cλ)
(
1
z

)k
.

The function ν∗1,z(C1) = 1 is independent of z.

Proof. The case n = 1 is clear. For n ≥ 2 we have Nλ(1) = 0 by [12, Lemma
2.5], whence Nλ(z)

z−1 is a polynomial of degree at most n− 1 in z. Therefore,

ν∗n,z(Cλ) =
Nλ(z)

zn − zn−1
=

1

zn−1

(
Nλ(z)

z − 1

)
is a polynomial in 1

z of degree at most n− 1. �

For n ≥ 2 the Laurent polynomial ν∗n,z(Cλ) is of degree at most n − 2 since
z | Nλ(z) ([13, Lemma 4.3]); that is, αn−1n (Cλ) = 0. Tables 1 and 2 give ν∗n,z(Cλ),
exhibiting the splitting measure coefficients αkn(Cλ) for n = 4 and n = 5.

λ cλ zλ ν∗4,z(Cλ)

[1, 1, 1, 1] 1 24 1
24

(
1− 5

z + 6
z2

)
[2, 1, 1] 6 4 1

4

(
1− 1

z

)
[2, 2] 3 8 1

8

(
1− 1

z −
2
z2

)
[3, 1] 8 3 1

3

(
1 + 1

z

)
[4] 6 4 1

4

(
1 + 1

z

)
TABLE 1. Values of the z-splitting measures ν∗4,z(Cλ) on parti-
tions λ of n = 4.
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λ cλ zλ ν∗5,z(Cλ)

[1, 1, 1, 1, 1] 1 120 1
120

(
1− 9

z + 26
z2
− 24

z3

)
[2, 1, 1, 1] 10 12 1

12

(
1− 3

z + 2
z2

)
[2, 2, 1] 15 8 1

8

(
1− 1

z −
2
z2

)
[3, 1, 1] 20 6 1

6

(
1− 1

z2

)
[3, 2] 20 6 1

6

(
1− 1

z2

)
[4, 1] 30 4 1

4

(
1 + 1

z

)
[5] 24 5 1

5

(
1 + 1

z + 1
z2

+ 1
z3

)
TABLE 2. Values of the z-splitting measures ν∗5,z(Cλ) on parti-
tions λ of n = 5.

3. INTERPRETATION OF CYCLE POLYNOMIAL COEFFICIENTS

The cycle polynomials Nλ(z) ∈ 1
zλ
Z[z] were defined for each partition λ of

n in Section 2.1. We express the coefficients of Nλ(z) in terms of characters hkn
of the cohomology of the pure braid group Pn viewed as an Sn-representation.
The connection is made through the twisted Grothendieck-Lefschetz formula of
Church, Ellenberg, and Farb [4]. Using explicit formulas for the cycle polynomials
we obtain constraints on the support of hkn. We compute hkn(λ) for all n in several
examples, fixing either the dimension k or the partition λ and varying the other.

3.1. Cohomology of the pure braid group. Given a set X of n distinct points
in 3-dimensional affine space, the braid group Bn consists of homotopy classes of
simple, non-intersecting paths beginning and terminating in X , with concatenation
as the group operation. Each element ofBn determines a permutation ofX , giving
a short exact sequence of groups

0→ Pn → Bn
π−→ Sn → 0.

Then Pn := kerπ is called the pure braid group. Pn consists of homotopy classes
of simple, non-intersecting loops based in X . The action of Sn on X induces an
action on Pn by permuting the loops. Thus, for each k, the kth group cohomology
Hk(Pn,Q) is an Sn-representation whose character we denote by hkn.

3.2. Twisted Grothendieck-Lefschetz formula. A character polynomial is a poly-
nomial P (x) ∈ Q[xj : j ≥ 1]. Character polynomials induce functions P : Par→
Q by

P (λ) := P
(
m1(λ),m2(λ), . . .

)
,

noting that mi(λ) = 0 for all but finitely many i. For f ∈ Confn(Fq) we let
P (f) := P ([f ]). Given two Q-valued functions F and G defined on Sn let

〈F,G〉 :=
1

n!

∑
σ∈Sn

F (σ)G(σ).
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The following Theorem is due to Church, Ellenberg, and Farb [4, Prop. 4.1].

Theorem 3.1 (Twisted Grothendieck-Lefschetz for PConfn). Given a prime power
q, an integer n ≥ 1, and a character polynomial P , we have∑

f∈Confn(Fq)

P (f) =
n∑
k=0

(−1)k
〈
P, hkn

〉
qn−k, (3.1)

where hkn is the character of the cohomology of the pure braid group Hk(Pn,Q).

The classic Lefschetz trace formula counts the fixed points of an endomorphism
f on a compact manifold M by the trace of the induced map on the singular co-
homology of M . One may interpret the Fq points on an algebraic variety V de-
fined over Fq as the fixed points of the geometric Frobenius endomorphism of V .
Using the machinery of `-adic étale cohomology, Grothendieck [10] generalized
Lefschetz’s formula to count the number of points in V (Fq) by the trace of Frobe-
nius on the étale cohomology of V . For nice varieties V defined over Z, there
are comparison theorems relating the étale cohomology of V (Fq) to the singular
cohomology of V (C). This connects the topology of a complex manifold to point
counts of a variety over a finite field.

Church, Ellenberg, and Farb [4] build upon Grothendieck’s extension of the Lef-
schetz formula to relate point counts on natural subsets of Confn(Fq) to the sin-
gular cohomology of the covering space PConfn(C) → Confn(C). PConfn(C)
is the space of n distinct, labelled points in C. The space PConfn(C) has funda-
mental group Pn, the pure braid group, and is a K(π, 1) for this group. Hence, the
singular cohomology of PConfn(C) is the same as the group cohomology of Pn.
This provides the connection between Confn(Fq) on the left hand side of (3.1) and
the character of the pure braid group cohomology on the right hand side.

3.3. Cycle polynomials and pure braid group cohomology. Theorem 3.2 ex-
presses Nλ(z) in terms of the characters hkn using Theorem 3.1.

Theorem 3.2. Let λ be a partition of n, then

Nλ(z) =
1

zλ

n∑
k=0

(−1)khkn(λ)zn−k,

where hkn is the character of the Sn-representation Hk(Pn,Q).

Proof. Define the character polynomial 1λ(x) ∈ Q[xj : j ≥ 1] by

1λ(x) =
∏
j≥1

(
xj

mj(λ)

)
.

Observe that for a partition µ ∈ Par(n) we have

1λ(µ) =

{
1 if µ = λ,

0 otherwise.
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Therefore,
Nλ(q) =

∑
f∈Confn(Fq)

1λ(f).

On the other hand, by Theorem 3.1 we have∑
f∈Confn(Fq)

1λ(f) =
n∑
k=0

(−1)k
〈
1λ, h

k
n

〉
qn−k.

If σ ∈ Sn, let [σ] ∈ Par(n) be the partition given by the cycle lengths of σ. Thus,〈
1λ, h

k
n

〉
=

1

n!

∑
σ∈Sn

1λ(σ)hkn(σ) =
1

n!

∑
σ∈Sn
[σ]=λ

hkn(σ) =
cλ
n!
hkn(λ) =

1

zλ
hkn(λ).

Therefore the identity

Nλ(q) =
1

zλ

n∑
k=0

(−1)khkn(λ)qn−k

holds for all prime powers q, giving the identity as polynomials in Q[z]. �

Remark. A recent result of Chen [3, Thm. 1] also gives the identity in Theorem
3.2 by specializing at t = 0.

Recall that for a partition λ of n the cycle polynomial Nλ(z) is defined by

Nλ(z) =
∏
j≥1

(
Mj(z)

mj(λ)

)
, (3.2)

where

Mj(z) =
1

j

∑
d|j

µ(d)zj/d

is the jth necklace polynomial.
Theorem 3.2 allows us to compute hkn(λ) by expanding the explicit formula for

Nλ(z) and comparing coefficients. We illustrate this by deducing constraints on the
support of hkn in Proposition 3.3 and computing values of hkn(λ) in the examples of
Sections 3.5 and 3.6.

3.4. Support restrictions on characters hkn. The character hkn is supported on
partitions with at least one small part, while hn−kn is supported on partitions with
at most k different parts (staircase partitions with at most k steps).

Proposition 3.3. Let 0 ≤ k ≤ n and hkn be the character of the Sn-representation
Hk(Pn,Q), then

(1) hkn is supported on partitions having at least one part of size at most 2k. The
value hkn(λ) is determined by mj(λ) for 1 ≤ j ≤ 2k.

(2) hn−kn is supported on partitions λ such that mj(λ) > 0 for at most k distinct
values of j.
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Proof. (1) Theorem 3.2 implies hkn(λ) is nonzero iff the coefficient of zn−k in
Nλ(z) is nonzero. The degree of Mj(z)− 1

j z
j is at most bj/2c. Hence if j > 2k,

then the coefficient of zn−k in
(
Mj(z)
mj(λ)

)
is zero. Thus the only j contributing to the

coefficient of zn−k in (3.2) are those with 1 ≤ j ≤ 2k.
(2) Theorem 3.2 implies hn−kn (λ) is nonzero iff the coefficient of zk in Nλ(z)

is nonzero. If mj(λ) > 0, then z divides
(
Mj(z)
mj(λ)

)
. Hence if mj(λ) > 0 for more

than k values of j, then hn−kn (λ) = 0. �

Remark. Property (1) is a manifestation of representation stability. A stronger
property of hkn is that it is given by a character polynomial for n ≥ 3k + 1, see
Example 3.7 and Section 6. The determination of these character polynomials
remains an open question [9]. Proposition 3.3 bounds which mj may occur in the
character polynomial for hkn.

3.5. Character values hkn(λ) for fixed λ and varying k. 5 We compute hkn(λ)
for fixed λ and varying k by expanding the cycle polynomial Nλ(z).

Example 3.4 (Dimensions of cohomology). The dimension of Hk(Pn,Q) is the
value of hkn at the identity element, corresponding to the partition (1n). Since
M1(z) = z and the centralizer of the identity in Sn has order z(1n) = n!. We have

N(1n)(z) =

(
z

n

)
=

1

n!

n−1∏
i=0

(z − i) =
1

n!

n∑
k=0

(−1)k
[

n

n− k

]
zn−k,

where
[
n

n−k
]

is an unsigned Stirling number of the first kind. Theorem 3.2 says

N(1n)(z) =
1

n!

n∑
k=0

(−1)khkn
(
(1n)

)
zn−k.

Comparing coefficients recovers the well-known formula for the dimension of the
pure braid group cohomology:

dimHk(Pn,Q) = hkn
(
(1n)

)
=

[
n

n− k

]
.

This result was observed by Arnol’d [1]. These values are given in Table 3.

Example 3.5. The partition λ = [n] corresponds to an n-cycle in Sn. The central-
izer of an n-cycle has order z[n] = n and

N[n](z) =

(
Mn(z)

1

)
= Mn(z) =

1

n

∑
d|n

µ(d)zn/d. (3.3)

Theorem 3.2 gives us

N[n](z) =
1

n

n∑
k=0

(−1)khkn
(
[n]
)
zn−k. (3.4)
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n \ k 0 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 1 3 2 0 0 0 0 0 0
4 1 6 11 6 0 0 0 0 0
5 1 10 35 50 24 0 0 0 0
6 1 15 85 225 274 120 0 0 0
7 1 21 175 735 1624 1764 720 0 0
8 1 28 322 1960 6769 13132 13068 5040 0
9 1 36 546 4536 22449 67284 118124 109584 40320

TABLE 3. Betti numbers of pure braid group cohomology Hk(Pn,Q).

Comparing coefficients, we find that

hn−kn

(
[n]
)

=

 (−1)n−kµ(nk ) if k | n ,

0 if k - n .

Note that the coefficients of N[n](z) are determined by the multiplicative struc-
ture of n in (3.3) and by the additive structure of n in (3.4).

3.6. Character values hkn(λ) for fixed k varying λ. We now compute hkn(λ) for
fixed k and varying λ.

Example 3.6 (Computing h0n and hnn). The cases k = 0 and n are both constant:
h0n = 1 and hnn = 0. The leading coefficient of Nλ(z) is 1/zλ, hence Theorem 3.2
tells us h0n(λ) = 1 for all λ. For j ≥ 1, we have z | Mj(z), from which it follows
that z | Nλ(z) for all partitions λ of n ≥ 1. In other words, for all mj ≥ 1

1

zλ
(−1)nhnn(λ) = Nλ(0) = 0.

Thus hnn(λ) = 0 for all λ, and Hn(Pn,Q) = 0.

Example 3.7 (Computing h1n and h2n). Taking λ = (1m12m2 · · · ), a careful analy-
sis of the zn−1 and zn−2 coefficients in Nλ(z) and Theorem 3.2 yields the follow-
ing formulas

h1n(λ) =

(
m1

2

)
+

(
m2

1

)
h2n(λ) = 2

(
m1

3

)
+ 3

(
m1

4

)
+

(
m1

2

)(
m2

1

)
−
(
m2

2

)
−
(
m3

1

)
−
(
m4

1

)
,

wheremj = mj(λ). These formulas represent h1n and h2n as character polynomials,
and they appear in [4, Lemma 4.8]. Note that h1n(λ) = h2n(λ) = 0 for partitions λ
having all parts larger than 2 and 4 respectively, illustrating Proposition 3.3 (1).

Example 3.8 (Computing hn−1n ). The z coefficient of Nλ(z) determines the value
of hn−1n (λ). Since each j with mj(λ) > 0 contributes a factor of z to Nλ(z), hn−1n
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is supported on partitions of the form λ = (jm). Note that the z coefficient of the
necklace polynomial Mj(z) is µ(j)/j. Let λ = (jm), then the z coefficient of

Nλ(z) =

(
Mj(z)

m

)
=
Mj(z)(Mj(z)− 1) · · · (Mj(z)−m+ 1)

m!

is (−1)m−1 µ(j)jm . Since zλ = jmm!, we conclude

hn−1n (λ) =

 (−1)m−nµ(j)jm−1(m− 1)! if λ = (jm) ,

0 otherwise.

Example 3.9 (Computing hn−2n ). The z2 coefficient ofNλ(z) determines hn−2n (λ).
Proposition 3.3 (2) tells us that hn−2n (λ) = 0 when mj(λ) > 0 for at least three
j. We treat the two remaining cases λ = (imijmj ) and λ = (jm) in turn. If
λ = (imijmj ), then the z coefficient of

(
Mi(z)
mi

)
is (−1)mi−1 µ(i)imi

, and similarly

for
(
Mj(z)
mj

)
. We have zλ = (imimi!)(j

mjmj !). Thus, by Theorem 3.2

hn−2n

(
(im1jmj )

)
= (−1)mi+mj−nzλ

µ(i)µ(j)

(imi)(jmj)

= (−1)mi+mj−n
(
µ(i)imi−1(mi − 1)!

)(
µ(j)jmj−1(mj − 1)!

)
.

If λ = (jm), then the z2 coefficient ofNλ(z) receives a contribution of (−1)m−1 µ(j/2)jm

from the quadratic term ofMj(z) if j is even. The z coefficient of
(
Mj(z)
mj

)
/Mj(z)

is
µ(j)

jm!

(
m−1∑
i=1

(−1)m−2(m− 1)!

i

)
= (−1)m

µ(j)

jm
Hm−1,

where Hm−1 =
∑m−1

i=1
1
i denotes the (m − 1)-th harmonic number. The z co-

efficient of Mj(z) is µ(j)
j . Using the convention that the Möbius function µ(α)

vanishes at non-integral α, we arrive at the following expression for hn−2n (λ):

hn−2n

(
(jm)

)
= zλ(−1)m−n

(
µ(j)2Hm−1 − µ( j2)

)
jm

= (−1)m−n
(
µ(j)2Hm−1 − µ( j2)

)
jm−1(m− 1)!.

4. AN EXACT SEQUENCE OF PURE BRAID GROUP COHOMOLOGY

Arnol’d [1] gave the following presentation of the cohomology ring H•(Pn,Q)
of the pure braid group Pn as an Sn-algebra.

Theorem 4.1 (Arnol’d). There is an isomorphism of graded Sn-algebras

H•(Pn,Q) ∼= Λ•[ωi,j ]/〈Ri,j,k〉,
where 1 ≤ i, j, k ≤ n are distinct, ωi,j = ωj,i have degree 1, and

Ri,j,k = ωi,j ∧ ωj,k + ωj,k ∧ ωk,i + ωk,i ∧ ωi,j .
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An element σ ∈ Sn acts on ωi,j by σ · ωi,j = ωσ(i),σ(j).

Proposition 4.2 below uses Theorem 4.1 to construct an exact sequence of the
pure braid group cohomology. This allows us to define the sequence Akn of Sn-
representations whose characters determine the splitting measure coefficientsαkn(Cλ).

In what follows, we identify H•(Pn,Q) with this presentation as a quotient of
an exterior algebra. The ring Λ•[ωi,j ]/〈Ri,j,k〉 is an example of an Orlik-Solomon
algebra, which arise as cohomology rings of complements of hyperplane arrange-
ments (see Dimca and Yuzvinsky [8] and Yuzvinsky [23].)

4.1. An exact sequence. Let τ =
∑

1≤i<j≤n ωi,j ∈ H1(Pn,Q). The element
τ generates a trivial Sn-subrepresentation of H1(Pn,Q). We define maps dk :
Hk(Pn,Q) → Hk+1(Pn,Q) for each k by ν 7→ ν ∧ τ . This map is linear and
Sn-equivariant, since

σ · dk(ν) = σ · (ν ∧ τ) = (σ · ν) ∧ (σ · τ) = (σ · ν) ∧ τ = dk(σ · ν).

From dk+1 ◦ dk = 0 we conclude that

0→ H0(Pn,Q)
d0−→ H1(Pn,Q)

d1−→ · · · d
n−1

−−−→ Hn(Pn,Q)
dn−→ 0

is a chain complex of Sn-representations. It follows from the general theory of
Orlik-Solomon algebras that the above sequence is exact [8, Thm. 5.2]. We include
a proof in this case for completeness.

Proposition 4.2. In the above notation,

0→ H0(Pn,Q)
d0−→ H1(Pn,Q)

d1−→ · · · d
n−1

−−−→ Hn(Pn,Q)
dn−→ 0 (4.1)

is an exact sequence of Sn-representations. Set Akn := Im(dk) ⊂ Hk+1(Pn,Q).
Hence we have an isomorphism of Sn-representations for each k,

Hk(Pn,Q) ∼= Ak−1n ⊕Akn.

Proof. Arnol’d [1, Cor. 3] describes an additive basis Bk forHk(Pn,Q) comprised
of all simple wedge products

ωi1,j1 ∧ · · · ∧ ωik,jk such that is < js for each s, and j1 < j2 < . . . < jk.

Let
Uk = {ωi1,j1 ∧ · · · ∧ ωik,jk ∈ Bk : (is, js) 6= (n− 1, n)},

for k > 0 and U0 = {1}. Then set

Ck = Uk ∪ {ω ∧ τ : ω ∈ Uk−1}.
Claim. Ck is a basis of Hk(Pn,Q).

For example, we have

C1 = {ωi,j : (i, j) 6= (n− 1, n)} ∪ {τ},
which is clearly a basis for H1(Pn,Q).

To prove the claim, since |Bk| = |Ck|, it suffices to show Ck spans. Note that

Bk = Uk ∪ {ω ∧ ωn−1,n : ω ∈ Uk−1},
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further reducing the problem to expressing ω ∧ ωn−1,n as a linear combination of
Ck for each ω ∈ Uk−1. Given ω = ωi1,j1 ∧ · · · ∧ ωik−1,jk−1

∈ Uk−1, we use the
relation

ωis,j ∧ ωi,j = ωis,i ∧ ωi,j − ωis,i ∧ ωis,j
to express ω ∧ ωi,j in terms of elements of Uk as follows:

ω ∧ ωi,j =



±ωi1,j1 ∧ · · · ∧ ωis,js ∧ ωi,j ∧ ωis+1,js+1 ∧ · · · ∧ ωik−1,jk−1

for js < j < js+1,

±ωi1,j1 ∧ · · · ∧ (ωis,i ∧ ωi,j − ωis,i ∧ ωis,j) ∧ · · · ∧ ωik−1,jk−1

for js = j, is 6= i,

0 for (is, js) = (i, j).

The first and third cases are easily seen to belong in the span of Uk. Since is, i < j
and j does not occur twice as a largest subscript in ω, we see inductively that the
second case also belongs in the span of Uk. Therefore, ω ∧ τ = ω ∧ ωn−1,n + ν,
where ν is in the span of Uk. Hence ω ∧ ωn−1,n = ω ∧ τ − ν is in the span of Ck
and we conclude that Ck is a basis, proving the claim.

We now show the sequence (4.1) is exact. Suppose ν ∈ ker(dk). Express ν in
the basis Ck as

ν =
∑
ω∈Uk

aω ω +
∑

ω∈Uk−1

bω ω ∧ τ.

Then
0 = dk(ν) = ν ∧ τ =

∑
ω∈Uk

aω ω ∧ τ .

Since ω ∧ τ is an element of the basis Ck+1 for each ω ∈ Uk, we have aω = 0.
Hence, ν = µ ∧ τ = dk−1(µ) where

µ =
∑

ω∈Uk−1

bω ω,

so ker(dk) = Im(dk−1). �

Recall from Section 3.5 that the dimension of Hk(Pn,Q) is given by an un-
signed Stirling number of the first kind

dim
(
Hk(Pn,Q)

)
=

[
n

n− k

]
,

where the unsigned Stirling numbers are determined by the identity
∏n−1
k=0 (x+ k) =∑n−1

k=0

[
n
k

]
xk. The exact sequence in Proposition 4.2 shows the dimension of Akn is

dim(Akn) =
k∑
j=0

(−1)j
[

n

n− k + j

]
.

Table 4 gives values of dim(Akn) for small n and k; here dim(An−1n ) = 0 for
n ≥ 2.
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n \ k 0 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 2 0 0 0 0 0 0
4 1 5 6 0 0 0 0 0
5 1 9 26 24 0 0 0 0
6 1 14 71 154 120 0 0 0
7 1 20 155 580 1044 720 0 0
8 1 27 295 1665 5104 8028 5040 0
9 1 35 511 4025 18424 48860 69264 40320

TABLE 4. dim(Akn)

5. POLYNOMIAL SPLITTING MEASURES AND CHARACTERS

We now express the splitting measure coefficients αkn(Cλ) in terms of the char-
acter values χkn(λ) where χkn is the character of the Sn-representation Akn con-
structed in Proposition 4.2. As a corollary we deduce that the rescaled z-splitting
measures are characters when z = − 1

m and virtual characters when z = 1
m , gener-

alizing results from [12].

5.1. Expressing splitting measure coefficients by characters. Recall,

ν∗n,z(Cλ) =
Nλ(z)

zn − zn−1
=

n−1∑
k=0

αkn(Cλ)
(
1
z

)k
.

We now express the splitting measure coefficient αkn(Cλ) in terms of the character
value χkn(λ).

Theorem 5.1. Let n ≥ 2 and λ be a partition of n, then

ν∗n,z(Cλ) =
1

zλ

n−1∑
k=0

(−1)kχkn(λ)
(
1
z

)k
,

where χkn is the character of the Sn-representation Akn defined in Proposition 4.2.
Thus,

αkn(Cλ) =
1

zλ
(−1)kχkn(λ).

Proof. In Theorem 3.2 we showed

Nλ(z) =
1

zλ

n∑
k=0

(−1)khkn(λ)zn−k,

where hkn is the character of Hk(Pn,Q). The Sn-representations Akn were defined
in Proposition 4.2 where we showed that

Hk(Pn,Q) ∼= Ak−1n ⊕Akn. (5.1)
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Taking characters in (5.1) gives

hkn = χk−1n + χkn.

We compute

Nλ(z)

zn
=

1

zλ

n∑
k=0

(−1)khkn(λ)
(
1
z

)k
=

1

zλ

n∑
k=0

(−1)k
(
χk−1n (λ) + χkn(λ)

)(
1
z

)k
=
(
1− 1

z

) 1

zλ

n−1∑
k=0

(−1)kχkn(λ)
(
1
z

)k
.

Dividing both sides by
(
1− 1

z

)
yields

ν∗n,z(Cλ) =
Nλ(z)(

1− 1
z

)
zn

=
1

zλ

n−1∑
k=0

(−1)kχkn(λ)
(
1
z

)k
.

Comparing coefficients in the two expressions for ν∗n,z(Cλ) we find

αkn(Cλ) =
1

zλ
(−1)kχkn(λ).

�

5.2. Splitting measures for z = ± 1
m . Representation-theoretic interpretations of

the rescaled z-splitting measures for z = ±1 were studied in [12, Sec. 5]. Theorem
1.3 below generalizes those results to give representation-theoretic interpretations
for z = ± 1

m when m ≥ 1 is an integer.

Theorem 5.2. Let n ≥ 2 and λ be a partition of n, then
(1) For z = − 1

m with m ≥ 1 an integer, we have

ν∗
n,− 1

m

(Cλ) =
1

zλ

n−1∑
k=0

χkn(λ)mk.

The function zλν∗n,− 1
m

(Cλ) is therefore the character of the Sn-representation

Bn,m =
n−1⊕
k=0

(
Akn
)⊕mk

,

with dimension

dimBn,m =

n−1∏
j=2

(1 + jm).

(2) For z = 1
m with m ≥ 1 an integer, we have

ν∗
n, 1
m

(Cλ) =
1

zλ

n−1∑
k=0

(−1)kχkn(λ)mk.
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The function zλν
∗
n, 1
m

(Cλ) is a virtual character, the difference of characters of

representations B+
n,m and B−n,m,

B+
n,m
∼=
⊕
2j<n

(
A2j
n

)⊕m2j

B−n,m
∼=

⊕
2j+1<n

(
A2j+1
n

)⊕m2j+1

.

These representations have dimensions

dimB±n,m =
1

2

( n−1∏
j=2

(1 + jm)±
n−1∏
j=2

(1− jm)
)

respectively.

Proof. (1) The formula for the (− 1
m)-splitting measure follows by substituting z =

− 1
m in Theorem 5.1. Arnol’d [1, Cor. 2] gives the Poincaré polynomial p(w) of

the pure braid group Pn as

p(w) =

n−1∏
j=1

(1 + jw) =

n∑
k=0

hkn
(
(1n)

)
wk.

On the other hand, by Theorem 3.2 we have

n!(−1)nwnN(1n)(−w−1) =

n∑
k=0

hkn
(
(1n)

)
wk. (5.2)

Dividing (5.2) by 1 + w we have

n−1∏
j=2

(1 + jw) = n!(−1)nwn
N(1n)(−w−1)

1 + w
=

n−1∑
k=0

χkn
(
(1n)

)
wk. (5.3)

Substituting w = m gives the dimension formula.
(2) Substituting z = 1

m in Theorem 5.1 gives the formula for the ( 1
m)-splitting

measure. Separating the even and odd parts we have

zλν
∗
n, 1
m

(Cλ) =
∑
2j<n

χ2j
n (λ)m2j −

∑
2j+1<n

χ2j+1
n (λ)m2j+1.

Hence zλν∗n, 1
m

(Cλ) = χ+
n,m(λ) − χ−n,m(λ), where χ±n,m are characters of B±n,m

respectively. The dimension formulas follow from decomposing (5.3) into even
and odd parts. �

Remark. Other results in [12, Theorems 3.2, 5.2 and 6.1] determine the values of
the rescaled splitting measures for z = ±1, showing they are supported on remark-
ably few conjugacy classes; for z = 1 these were the Springer regular elements of
Sn. Theorem 1.3 does not explain the small support of the characters for z = ±1.
The characters hkn and χkn have large support in general, hence cancellation must
occur to explain the small support. It would be interesting to account for this phe-
nomenon.
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5.3. Cohomology of the pure braid group and the regular representation. We
use Theorem 5.1 together with the splitting measure values at z = −1 computed
in [12] to determine a relation between the Sn-representation structure of the pure
braid group cohomology and the regular representation of Sn. Let Akn be the Sn-
subrepresentation constructed in Proposition 4.2, and define the Sn-representation

An :=
n−1⊕
k=0

Akn.

Theorem 5.3. Let 1n, Sgnn, and Q[Sn] denote the trivial, sign, and regular repre-
sentations of Sn respectively. Then there are isomorphisms of Sn-representations,

n⊕
k=0

Hk(Pn,Q)⊗ Sgn⊗kn
∼= Q[Sn].

and
An ⊗

(
1n ⊕ Sgn⊗kn

) ∼= Q[Sn].

Proof. We showed in Proposition 4.2 that Hk(Pn,Q) ∼= Ak−1n ⊕Akn, with A−1n =
Ann = 0. Therefore, summing over 0 ≤ k ≤ n,

An ∼=
⊕
k even

Hk(Pn,Q) ∼=
⊕
k odd

Hk(Pn,Q).

Since Sgn⊗2n
∼= 1n, we have

n⊕
k=0

Hk(Pn,Q)⊗ Sgn⊗kn
∼=
( ⊕
k even

Hk(Pn,Q)⊗ 1n

)
⊕
(⊕
k odd

Hk(Pn,Q)⊗ Sgnn

)
∼= (An ⊗ 1n)⊕ (An ⊗ Sgnn)

∼= An ⊗ (1n ⊕ Sgnn).

If χn is the character of An, then it follows from Theorem 1.3 that

χn(λ) =
n−1∑
k=0

χkn(λ) = zλν
∗
n,−1(Cλ),

so the values of χn are given by the rescaled (−1)-splitting measure.
Theorem 6.1 of [12] shows

ν∗n,−1(Cλ) =

{
1
2 λ = (1n) or (1n−2 2),

0 otherwise.

Now let ρ = χn ·(1n+sgnn) be the character ofAn⊗(1n⊕ Sgnn). If λ = (1n),
we compute

ρ(λ) = χn(λ)
(
1 + sgnn(λ)

)
= n!ν∗n,−1(Cλ)(2) = n!.

If λ = (1n−2 2), then
(
1 + sgnn(λ)

)
= 0, hence ρ(λ) = 0. If λ is any other

partition, then ν∗n,−1(Cλ) = 0, hence ρ(λ) = 0. Therefore ρ agrees with the
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character of the regular representation, proving
n⊕
k=0

Hk(Pn,Q)⊗ Sgn⊗kn
∼= An ⊗ (1n ⊕ Sgnn) ∼= Q[Sn].

�

6. REPRESENTATION STABILITY

In previous sections we expressed the coefficients of cycle polynomials and
splitting measures in terms of characters of Sn-representations. These sequences
of representations are known to exhibit a phenomenon described by Church and
Farb [6] as representation stability.

6.1. Stability of Sn-representations. The irreducible representations of Sn are
naturally parametrized by partitions λ of n. Let Sλ be an irreducible represen-
tation of Sn corresponding to λ. Say Vn is a sequence of finite dimensional Sn-
representations, and let n0 be a fixed positive integer. Then Vn0 has an irreducible
decomposition

Vn0
∼=
⊕
|λ|=n0

(
Sλ
)⊕eλ .

Following Church and Farb, we say the sequence Vn stabilizes at n0 if for each
n ≥ n0 we have

Vn ∼=
⊕
|λ|=n0

(
Sλ+(n−n0)

)⊕eλ ,
where for a non-negative integerm the partition λ+m is defined as [λ1+m,λ2, . . . , λ`]
when λ = [λ1, λ2, . . . , λ`]. In other words, the sequence Vn stabilizes at n0 if all
the irreducible decompositions of subsequent Vn are determined by the decompo-
sition of Vn0 . It stabilizes sharply at n0 if n0 is the least integer with this property.

If a sequence Vn of Sn-representations stabilizes, then the characters for Vn have
a uniform description for all sufficiently large n given by a polynomial character
χP where P (x) ∈ Q[xj : j ≥ 1] is a character polynomial. If λ is a partition, then

χP (λ) := P
(
m1(λ),m2(λ), . . .

)
,

noting that mj(λ) = 0 for all but finitely many j. If m is the largest index of a
variable xm occurring in P (x), then χP is determined by mj(λ) for j ≤ m.

Church and Farb [6] introduced the notion of representation stability to describe
a collection of closely related and frequently observed phenomenon. The pure
braid group cohomology Hk(Pn,Q) provided one of their initial examples of rep-
resentation stability. Recently Hersh and Reiner [11] studied the representation
stability of the cohomology of configuration space of n points in Rd, which in-
cludes the pure braid group cohomology as the case d = 2. Their results imply that
for fixed k, both sequences Hk(Pn,Q) and Akn stabilize sharply at n0 = 3k + 1,
as we state in Theorem 6.3 below.

We illustrate the stability phenomenon through the irreducible decompositions
of Hk(Pn,Q) and Akn for k = 1 (n0 = 4) in Table 5 and for k = 2 (n0 = 7) in
Table 6 and Table 7.
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n dimH1 H1(Pn,Q) dimA1
n A1

n

2 1 [2] 0 0

3 3 [3]⊕ [2, 1] 2 [2, 1]

4 6 [4]⊕ [3, 1]⊕ [2, 2] 5 [3, 1]⊕ [2, 2]

5 10 [5]⊕ [4, 1]⊕ [3, 2] 9 [4, 1]⊕ [3, 2]

n
[
n
n−1
]

[n]⊕ [n− 1, 1]⊕ [n− 2, 2]
[
n
n−1
]
− 1 [n− 1, 1]⊕ [n− 2, 2]

TABLE 5. Irreducible decompositions for H1(Pn,Q) and A1
n.

Here λ abbreviates the irreducible representation Sλ.

n dimH2 H2(Pn,Q)

3 2 [2, 1]

4 11 2[3, 1]⊕ [2, 2]⊕ [2, 1, 1]

5 35 2[4, 1]⊕ 2[3, 2]⊕ 2[3, 1, 1]⊕ [2, 2, 1]

6 85 2[5, 1]⊕ 2[4, 2]⊕ 2[4, 1, 1]⊕ [3, 3]⊕ 2[3, 2, 1]

7 175 2[6, 1]⊕ 2[5, 2]⊕ 2[5, 1, 1]⊕ [4, 3]⊕ 2[4, 2, 1]⊕ [4, 3, 1]

8 322 2[7, 1]⊕ 2[6, 2]⊕ 2[6, 1, 1]⊕ [5, 3]⊕ 2[5, 2, 1]⊕ [4, 3, 1]

n
[
n
n−2
]

2[n− 1, 1]⊕ 2[n− 2, 2]⊕ 2[n− 2, 1, 1]⊕ [n− 3, 3]

⊕2[n− 3, 2, 1]⊕ [n− 4, 3, 1]

TABLE 6. Irreducible decomposition for H2(Pn,Q)

n dimA2
n A2

n

3 0 0

4 6 [3, 1]⊕ [2, 1, 1]

5 26 [4, 1]⊕ [3, 2]⊕ 2[3, 1, 1]⊕ [2, 2, 1]

6 71 [5, 1]⊕ [4, 2]⊕ 2[4, 1, 1]⊕ [3, 3]⊕ 2[3, 2, 1]

7 155 [6, 1]⊕ [5, 2]⊕ 2[5, 1, 1]⊕ [4, 3]⊕ 2[4, 2, 1]⊕ [3, 3, 1]

8 295 [7, 1]⊕ [6, 2]⊕ 2[6, 1, 1]⊕ [5, 3]⊕ 2[5, 2, 1]⊕ [4, 3, 1]

n
[
n
n−2
]
−
[
n
n−1
]

+ 1 [n− 1, 1]⊕ [n− 2, 2]⊕ 2[n− 2, 1, 1]⊕ [n− 3, 3]

⊕2[n− 3, 2, 1]⊕ [n− 4, 3, 1]

TABLE 7. Irreducible decomposition for A2
n

The associated character polynomials forH1(Pn,Q) andH2(Pn,Q) were given
in Example 3.7. In general, given a stable sequence Vn of Sn-representations,
it appears difficult to determine when it sharply stabilizes, and to determine the
associated character polynomial [9, Problem 4.7].
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6.2. Representation stability for Hk(Pn,Q) and Akn. Let Πn denote the collec-
tion of partitions of a set with n elements, partially ordered by refinement (see
Stanley [19, Example 3.10.4]).

If 0 = C0, C1, C2, . . . is any sequence of semisimple modules with submodules
Bk ⊆ Ck, then isomorphisms

Ck ∼= Bk−1 ⊕Bk

for each k determine theBk up to isomorphism. Finite dimensional Sn-representations
are semisimple by Maschke’s theorem, hence

Hk(Pn,Q) ∼= Ak−1n ⊕Akn (6.1)

determines Akn up to isomorphism.
Hersh and Reiner [11, Sec. 2] describe two other sequences of Sn-representations

giving direct sum decompositions of Hk(Pn,Q) coming from the Whitney and
simplicial homology of the lattice Πn.

Proposition 6.1. (1) There is an isomorphism of Sn-representations

Hk(Pn,Q) ∼= WHk(Πn), (6.2)

where WHk(Πn) is the kth Whitney homology of the lattice Πn.
(2) There is an isomorphism of Sn-representations

WHk(Πn) ∼= β[k−1](Πn)⊕ β[k](Πn)

where β[k](Πn) is the [k] = {1, 2, ..., k}-rank selected homology of the lattice Πn.
(3) There is an isomorphism of Sn-representations

β[k](Πn) ∼= H̃k−1
(
Πk
n

)
,

where Πk
n is the sub-poset of λ ∈ Πn with |λ| − `(λ) ≤ k and H̃k−1

(
Πk
n

)
denotes

its reduced simplicial homology.

Proof. (1) This result is due to Sundaram and Welker [21, Theorem 4.4 (iii)], cf.
[11, Thm. 2.11, Sec. 2.3]. (See [11, Sec. 2.4] for more on the Whitney homology
of Πn.)

(2) Sundaram [20, Prop. 1.9] decomposes WHk(Πn) as

WHk(Πn) ∼= β[k−1](Πn)⊕ β[k](Πn), (6.3)

where [k] = {1, 2, . . . , k} and β[k](Πn) is the [k]-rank selected homology of the
lattice Πn [11, Prop. 2.17].

(3) Because the lattice Πn is Cohen-Macaulay, Hersh and Reiner note [11, Sec.
2.5] the isomorphism

β[k](Πn) ∼= H̃k−1
(
Πk
n

)
, (6.4)

where Πk
n is the sub-poset of λ ∈ Πn with |λ| − `(λ) ≤ k and H̃k−1

(
Πk
n

)
is its

reduced simplicial homology. �

The following proposition relates Akn, β[k](Πn), and H̃k−1
(
Πk
n

)
using (6.1).
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Proposition 6.2. Let Akn be as defined in Prop. 4.2, Πn be the lattice of partitions
of an n-element set, and Πk

n ⊆ Πn the sub-poset comprised of λ ∈ Πn with
|λ| − `(λ) ≤ k. Then we have the following isomorphisms of Sn-representations

Akn
∼= β[k](Πn) ∼= H̃k−1

(
Πk
n

)
.

Proof. The isomorphisms (6.2) and (6.3) in Proposition 6.1 give the direct sum
decompositions

Hk(Pn,Q) ∼= β[k−1](Πn)⊕ β[k](Πn)

for 0 ≤ k ≤ n. By (6.1) we have that

Hk(Pn,Q) ∼= Ak−1n ⊕Akn.

Since for k = 0,
β[−1](Πn) ∼= A−1n = {0},

we obtain by induction on k ≥ 1 that

Akn
∼= β[k](Πn)

Combining this isomorphism with (6.4) finishes the proof. �

Hersh and Reiner [11] prove sharp stability results for various sequences of
Sn-representations related to configuration spaces. We conclude this section by
expressing their stability results in our context.

Theorem 6.3 (Stability for splitting measure coefficients). For each k ≥ 1,
(1) The sequence of Sn-representations Hk(Pn,Q), with characters hkn, stabi-

lizes sharply at n0 = 3k + 1.
(2) The sequence of Sn-representationsAkn with characters χkn, stabilizes sharply

at n0 = 3k + 1.

Proof. (1) This sharp stability result is the special case d = 2 of [11, Theorem 1.1].
(2) Corollary 4.4 of [11] shows that the sequence β[k](Πn) of Sn-representations

stabilizes sharply at n0 = 3k + 1. Proposition 6.2 gives the isomorphism Akn
∼=

β[k](Πn) and the result follows. �

7. CONTINUITY OF THE NORMALIZED SPLITTING MEASURE

In this section we introduce the normalized splitting measure and show how it
manifests the stability of the splitting measure coefficients through a “continuity
property” with respect to certain natural limits defined below.

7.1. Normalized splitting measures.

Definition 7.1. The normalized splitting measure νw : Par → Z[w] is defined on
a partition λ ∈ Par with |λ| = n ≥ 2 by

νw(λ) := zλ
wnNλ(w−1)

1− w
and νw(λ) = 1 for the unique partition λ of 1.
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The normalized splitting measure νw(λ) is a polynomial in w with integer coef-
ficients. The normalized splitting measure relates to the z-splitting measure by

νw(λ) = zλν
∗
|λ|, 1

w

(Cλ).

All νw(λ) have constant term 1, corresponding to the property that the z-splitting
measure is the uniform distribution on Sn at z = ∞. Theorem 5.1 and (7.1) give
the following expression for the normalized splitting measure νw(λ) in terms of
the character values χkn(λ) when |λ| = n,

νw(λ) =

n−1∑
k=0

(−1)kχkn(λ)wk.

In Tables 8 and 9 we give values of ν∗n,z(Cλ) and of the normalized splitting mea-
sure νw(λ) for n = 4 and n = 5, extending Tables 1 and 2.

λ cλ zλ ν∗4,z(Cλ) νw(λ)

[1, 1, 1, 1] 1 24 1
24

(
1− 5

z + 6
z2

)
1− 5w + 6w2

[2, 1, 1] 6 4 1
4

(
1− 1

z

)
1− w

[2, 2] 3 8 1
8

(
1− 1

z −
2
z2

)
1− w − 2w2

[3, 1] 8 3 1
3

(
1 + 1

z

)
1 + w

[4] 6 4 1
4

(
1 + 1

z

)
1 + w

TABLE 8. Values of the splitting measure ν∗4,z(Cλ) and Normal-
ized splitting measure νw(λ) on partitions λ of for n = 4.

λ cλ zλ ν∗5,z(Cλ) νw(λ)

[1, 1, 1, 1, 1] 1 120 1
120

(
1− 9

z + 26
z2
− 24

z3

)
1− 9w + 26w2 − 24w3

[2, 1, 1, 1] 10 12 1
12

(
1− 3

z + 2
z2

)
1− 3w + 2w2

[2, 2, 1] 15 8 1
8

(
1− 1

z −
2
z2

)
1− w − 2w2

[3, 1, 1] 20 6 1
6

(
1− 1

z2

)
1− w2

[3, 2] 20 6 1
6

(
1− 1

z2

)
1− w2

[4, 1] 30 4 1
4

(
1 + 1

z

)
1 + w

[5] 24 5 1
5

(
1 + 1

z + 1
z2

+ 1
z3

)
1 + w + w2 + w3

TABLE 9. Values of the splitting measure ν∗5,z(Cλ) and normal-
ized splitting measure values νw(λ) on partitions λ of n = 5.
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7.2. Stable sequences of partitions. Viewing a partition λ as a non-increasing,
eventually zero sequence of non-negative integers, we let λi denote the ith largest
part of λ. We identify partitions with their Young diagrams written in British style.
Given two partitions λ(1), λ(2), we say λ(1) ⊆ λ(2) if λ(1)i ≤ λ

(2)
i for each i, or more

visually, if the Young diagram of λ(1) fits inside that of λ(2). A nested sequence of
partitions λ(1) ⊆ λ(2) ⊆ λ(3) ⊆ . . . is any infinite chain.

Definition 7.2. (1) We call a nested sequence of partitions
(
λ(k)

)
a stable sequence

if the length sequence `
(
λ(k)

)
is bounded.

(2) Given a stable sequence
(
λ(k)

)
, let s ≥ 1 be minimal such that

(
λ
(k)
s

)
is

eventually constant, then we define the stable limit of
(
λ(k)

)
to be the partition

stablim
k→∞

λ(k) := lim
k→∞

[λ(k)s , λ
(k)
s+1, λ

(k)
s+2, . . .],

where the limit on the right hand side is taken componentwise.

Example 7.3. (1) The sequence of partitions λ(k) = [k+4, k+3, 3, 2, 1] is a stable
sequence, since `

(
λ(k)

)
= 5 for each k.

λ(1) = λ(2) = λ(5) =

The smallest s for which
(
λ
(k)
s

)
is bounded is s = 3. The stable limit of

(
λ(k)

)
is

stablim
k→∞

λ(k) = [3, 2, 1] =

(2) The staircase sequence µ(k) = [k, k−1, k−2, . . . , 1] is not a stable sequence
since `

(
µ(k)

)
= k is unbounded.

µ(1) = µ(3) = µ(5) =

Remark. Stable sequences of partitions can have sequences of blocks going to in-
finity at different rates, e.g. µ(k) = [k2 + 4, k + 3, 3, 2, 1] is a stable sequence
having the same stable limit as λ(k) = [k + 4, k + 3, 3, 2, 1].

7.3. Continuity with respect to stable limits. Recall from Section 7.1 that the
normalized splitting measure νw defined by

νw(λ) = zλ
wnNλ(w−1)

1− w
,

where λ ∈ Par is a partition.
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We show that the normalized splitting measure νw is continuous with respect to
stable limits. Before stating the precise result we demonstrate with an example.

Example 7.4. Consider the stable sequence λ(k) = [k + 2, 2, 2, 1].

λ(1) = λ(2) = λ(5) = ,

We compute values of νw
(
λ(k)

)
in Table 10.

λ(k) νw(λ(k))

λ(1) 1− w − 3w2 +O
(
w3
)

λ(10) 1− w − 2w2 +O
(
w6
)

λ(100) 1− w − 2w2 +O
(
w51
)

λ(1000) 1− w − 2w2 +O
(
w501

)
TABLE 10. Values of νw

(
λ(k)

)
for λ(k) = [k + 2, 2, 2, 1].

The sequence νw(λ(k)) appears to converge coefficientwise to the limit 1−w−
2w2. This convergence can be viewed in the formal power series ring Z[[w]], i.e.
the w-adic completion of Z[w]. Observe that λ := stablimk→∞ λ

(k) = [2, 2, 1]
has normalized measure νw(λ) = 1− w − 2w2. In other words,

lim
k→∞

νw
(
λ(k)

)
= νw

(
stablim
k→∞

λ(k)
)
, (7.1)

where the limit on the left hand side is taken coefficientwise in Z[w] and the limit
on the right hand side is the stable limit of the sequence

(
λ(k)

)
of partitions.

Theorem 7.5 (Continuity of νw with respect to stable limits). Suppose
(
λ(k)

)
is a

stable sequence of partitions, then

lim
k→∞

νw
(
λ(k)

)
= νw

(
stablim
k→∞

λ(k)
)
,

where the limit on the left hand side is taken coefficientwise in Z[w] and the limit
on the right hand side is the stable limit of a sequence of partitions.

Proof. All limits of sequences of polynomials in Z[w] are taken coefficientwise,
i.e. are limits in the formal power series ring Z[[w]]. We first claim that

lim
j→∞

jwjMj

(
w−1

)
= 1. (7.2)

Recalling the definition of the jth necklace polynomial, we compute

jwjMj

(
w−1

)
=
∑
d|j

µ(d)wj
(
1− 1

d

)
= 1 +

∑
d|j
d 6=1

µ(d)wj
(
1− 1

d

)
.
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Since d ≥ 2,
(
1− 1

d

)
≥ 1

2 , and thus

wj/2 | jwjMj

(
w−1

)
− 1, (7.3)

giving the limit (7.2). Next we claim that for any integer m ≥ 1,

lim
j→∞

jmm!wjm
(
Mj

(
w−1

)
m

)
= 1. (7.4)

This follows from (7.2) after writing

jmm!wjm
(
Mj

(
w−1

)
m

)
=

m−1∏
k=0

(
jwjMj

(
w−1

)
− jwjk

)
,

and taking the limit of each factor.
If
(
λ(k)

)
is a stable sequence with s minimal such that

(
λ
(k)
s

)
is eventually

constant, set λ := stablimk→∞ λ
(k). Then λs := limk→∞ λ

(k)
s is the largest part

of λ. We compute

(1−w) lim
k→∞

νw
(
λ(k)

)
=
∏
j≥1

lim
k→∞

jmj(λk)mj(λk)!w
jmj(λk)

(
Mj

(
w−1

)
mj(λ(k))

)
. (7.5)

For any j ≤ λs,
lim
k→∞

mj(λk) = mj(λ),

hence the the limit of the factors in (7.5) stabilizes. If j > λs then mj(λk) = 0 for
all sufficiently large k, hence these factors in (7.5) all tend to 1 by (7.3).

Therefore

lim
n→∞

νw
(
λ(k)

)
=

1

1− w
∏

1≤j≤λs

jmj(λ)mj(λ)!wjmj(λ)
(
Mj

(
w−1

)
mj(λ)

)
= νw

(
stablim
n→∞

λ(k)
)
.

�
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